


全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第 5 课时:2.2.3 向量的线性运算(四)【三维目标】:一、知识与技能1.理解两个向量共线的含义,并能运用它们证明简单的几何问题。2.理解两个向量共线(平行)的充要条件,能表示与某个非零向量共线的向量,能判断两个向量共线;3.通过练习使学生对两个向量共线的充要条件,平面向量的基本定理有更深刻的理解,初步学会用向量的方法解决一些简单的几何问题和实际应用问题二、过程与方法通过对两个向量共线(平行)充要条件的探索,对平面向量的基本定理有更深刻的理解,为了帮助学生消化和巩固相应的知识,教材设置了几个例题;通过讲解例题,指导发现知识结论,培养学生抽象概括能力和逻辑思维能力.三、情感、态度与价值观通过本节内容的学习,使同学们对实数与向量积以及平面向量基本定理有了较深的认识,让学生理解和领悟知识将各学科有机的联系起来了,这样有助于激发学生学习数学的兴趣和积极性,有助于培养学生的发散思维和勇于创新的精神.【教学重点与难点】:重点:理解两个向量共线(平行)的充要条件,能表示与某个非零向量共线的向量,能判断两个向量共线;难点:对两个向量共线(平行)的充要条件的理解.【学法与教学用具】:1. 学法:(1)自主性学习+探究式学习法: (2)反馈练习法:以练习来检验知识的应用情况,找出未掌握的内容及其存在的差距.2. 教学用具:多媒体、实物投影仪.【授课类型】:新授课【课时安排】:1课时【教学思路】: 一、创设情景,揭示课题 向量数乘的含义及向量数乘的运算律; 二、研探新知【探索】:(师生共同分析向量共线的充要条件)对于向量()、, 如果有一个实数,使得,那么与共线吗? 如果与共线,是否存在一个实数,使?答案:若有向量()、,实数,使=,则由实数与向量积的定义知:与为共线向量若与共线()且|:|=,则当与同向时=;当与反向时=-从而得:向量与非零向量共线的充要条件是:有且只有一个非零实数,使=.定理:向量 ()与共线,当且仅当有唯一一个实数,使=【思考】:为什么要求是非零的?(若=,则,总共线,而时,则不存在实数,使=成立;而=时,不管取什么值,=总成立,不唯一) 三、质疑答辩,排难解惑,发展思维 BDACE例1(教材例3)如图2-2-10,分别为的边和中点,求证:与共线,并将用线性表示。例2 判断下列各题中的向量是否共线:(1),;(2),且,共线解:(1)当时,则,显然与共线当时,=-=-,与共线(3)当,中至少有一个为零向量时,显然与共线当,均不为零向量时,设 ,若时,显然与共线若时, 与共线例3 (教材例4)如图2-2-11,中,为直线上一点, 求证:四、巩固深化,反馈矫正 教材练习五、归纳整理,整体认识生总结:(1)向量与非零向量共线的条件是:有且只有一个非零实数,使=.(2)理解两向量共线(平行)的充要条件,并会判断两个向量是否共线。(3)平面向量基本定理的理解及注意的问题. 六、承上启下,留下悬念 【思考】:上例所证的结论表明:起点为,终点为
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 浦发银行泉州市石狮市2025秋招英文面试题库及高分回答
- 兴业银行北海市海城区2025秋招群面模拟题及高分话术
- 民生银行台州市温岭市2025秋招群面案例总结模板
- 民生银行成都市温江区2025秋招面试典型题目及参考答案
- 广发银行阳江市阳东区2025秋招笔试价值观测评题专练及答案
- 民生银行邯郸市武安市2025秋招数据分析师笔试题及答案
- 华夏银行长治市潞州区2025秋招结构化面试15问及话术
- 华夏银行廊坊市三河市2025秋招无领导小组面试案例库
- 华夏银行保定市容城县2025秋招半结构化面试题库及参考答案
- 浦发银行泉州市石狮市2025秋招无领导模拟题角色攻略
- 跨学科实践活动07 垃圾的分类与回收利用(活动设计)-2024-2025学年九年级化学跨学科实践活动教学说课稿+设计(人教版2024)
- 2025年职业培训学校建设项目可行性分析与初步设计方案报告
- 2025年亚马逊AWS云服务合同范本参考
- 班干部聘任仪式
- 2025年老年病学住院医师规培出科考试理论笔试答案及解析
- 激光武器物理课件
- 气瓶泄漏应急演练范文大全
- 2025年REACH 250项高度关注物质SVHC清单第34批
- 2025年软件架构师专业技术考核试题及答案解析
- 八上语文第9课《天上有颗南仁东星》课件
- 2025-2026学年苏教版(2024)小学科学三年级上册(全册)课时练习及答案(附目录P102)
评论
0/150
提交评论