




全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
求三角函数最值的方法三角函数最值问题是三角函数中的基本内容,也是高中数学中经常涉及的问题。这部分内容是一个难点,不易让学生掌握,它对三角函数的恒等变形能力及综合应用要求较高。求函数的最值是历届高考数学考查的热点之一,以三角函数为载体的问题已成为高考中的热点问题。1、 一角一次一函数形式在学习了三角函数的内容以后可以知道,要求关于三角函数最值只能转化到或者这种形式才可以求其最值,我把这种形式称为“一角一次一函数形式”。例1:求的最值。解: 当即 时,当即时,变式1:再加上是,结果如何? 在化到y时,.变式2: 求函数,的最值. 解:, 当时,;当时,.变式3:,求的最大值与最小值.解:(先观察角之间的关系,最好能转化为同角,然后看同角是三角函数的次数,在化为同一个函数名)当时, 当时,在这个解题过程中,运用到了转化思想,化归到我们已经学习过的三角函数中去,通过一些倍角公式,与同角合并公式, 的转化,把它转化到“一角一次一函数形式”,此时对于同一个角度是同次的。所以说把化成的形式是解决问题普遍方法2、 一角二次一函数形式当三角函数转化为“一角一次一函数形式”有困难的时候,该如何呢? 例2 求函数的最值. 分析:先观察这个解析式可知,对于同一个角而言,不是同次时转化不到“一角一次一函数形式”时,肯定对同角而言是一次与二次的,所以有可能化归到二次函数去。 解: 变式1:求的最值. 解: 当即时, 当即时,.此题这样做在思考上有一定的困难,但是我们可以思考到与是有关联的,由此可设 ,由此化归到了一元二次函数,比上面的思维应该简单一点。所以以后见到与同时出现时,借助它们之间的联系用换元法。利用一些三角公式进行变量替换,是求三角最值的一种常用技巧。 对同一个角,有一次,两次出现,一般都可以转化到“一角二次一函数形式”。3、 利用有界性(,) 三角函数中还有很多最值问题并不可以有上面两种方法解决,就有下面的例题来展示:例3 求函数的值域.分析:不能转化到“一角一次一函数”与“一角二次一函数”这两种形式,但与我们以前所学的求的最值,联系比较密切,借助分离变量或者说是反表示解决这一题目。 解:, 因为 ,所以. 由此可得,函数的值域为. 解二:, (用变量分离的方法更简便)变式1:求函数的值域.解:由题意得,所以 , 所以函数的值域为.解二:(此题还可以与几何图形相联系) 由题意得XQOP2P1Y 设点,则可以看成是单位圆上的动点P与点Q 连线的斜率,有图象可得, 这个代数问题通过解析几何解决了,体现了数形结合的数学思想。 这些过程中主要是让学生在学习的过程中,要会与以前所学知识的联系,把新的问题化归或转化到已经学过的知识中去。这就要求要把知识的传授和能力的培养相结合,注重数学思想方法的教学,而学生们一旦掌握了一种新的数学思想和方法,思维就提高到一个新的层次,解答数学问题的能力就有较大的提高,因为“数学的精神和本质在于它的思想和方法”。在这个求三角函数最值基本的过程中,让学生深刻的了解其中的数学思想方法,掌握“通性通法”,也就掌握了学习数学的“万能”钥匙。数学思想方法
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年环保产业技术创新与产业升级技术创新合作模式研究报告
- 2025年电商平台大数据分析在眼镜行业精准营销策略报告
- 2025年核能产业铀矿资源需求预测与市场供应分析报告
- 2025年环保行业环保产业环保教育与培训技术进展与应用研究报告001
- 押题宝典高校教师资格证之《高等教育法规》试题含答案详解(完整版)
- 2025至2030年中国生蚝市场运行态势及行业发展前景预测报告
- 押题宝典高校教师资格证之《高等教育心理学》通关考试题库及答案详解【夺冠系列】
- 推拿治疗学试题库含答案详解(基础题)
- 考点解析-冀教版七年级下册期末试题附答案详解【典型题】
- 2025年度汽车租赁与新车购买双重保障合同
- 应急心理与心理疏导
- JJF 1183-2025 温度变送器校准规范
- 2025年新《公司法》知识竞赛题库(含答案)
- 颜料企业数字化转型与智慧升级战略研究报告
- 农产品加工可行性报告
- 七年级体育 运动损伤的预防和处理说课稿
- 2025年度人工智能辅助医疗合作协议范本模板4篇
- GB/T 15561-2024数字指示轨道衡
- 办公用品供货服务计划方案
- 全国粤教清华版初中信息技术七年级上册第2单元第4节《云服务》说课稿
- 一年级得稳稳地走-一年级家长会【课件】
评论
0/150
提交评论