二次函数总复习_第1页
二次函数总复习_第2页
二次函数总复习_第3页
二次函数总复习_第4页
二次函数总复习_第5页
已阅读5页,还剩31页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第四讲二次函数总复习,一、定义,二、图象特点和性质,四、解析式的求法,五、函数的应用,中考考点要求,一般地,如果y=ax2+bx+c,一、定义,二、图象特点和性质,四、解析式的求法,五、函数的应用,(a、b、c是常数,a0),的函数叫做二次函数,其中a为二次项系数,b为一次项系数,c为常数项。,二次函数y=ax2的性质,位置开口方向,对称性,顶点最值,增减性,开口向上在x轴上方,开口向下在x轴下方,关于y轴对称,对称轴方程是直线x0,顶点坐标是原点(0,0),当x=0时,y最小值=0,当x=0时,y最大值=0,在对称轴左侧递减在对称轴右侧递增,在对称轴左侧递增在对称轴右侧递减,二次函数y=ax2+k的性质,开口向上,开口向下,a的绝对值越大,开口越小,关于y轴对称,顶点是最低点,顶点是最高点,在对称轴左侧递减在对称轴右侧递增,在对称轴左侧递增在对称轴右侧递减,(0,k),二次函数y=a(x-)2的性质,开口向上,开口向下,a的绝对值越大,开口越小,直线,顶点是最低点,顶点是最高点,在对称轴左侧递减在对称轴右侧递增,在对称轴左侧递增在对称轴右侧递减,h0,h0),y=a(x-h)2+k(a0),y=ax2+bx+c(a0,a0,c=0,c0,ab=0,ab0,=0,0,a0,c=0,c0,ab=0,ab0,=0,0,a0,c=0,c0,ab=0,ab0,=0,0,a0,c=0,c0,ab=0,ab0,=0,0,a0,c=0,c0,ab=0,ab0,=0,0,a0,c=0,c0,ab=0,ab0,=0,0,a0,c=0,c0,ab=0,ab0,=0,0,a0,c=0,c0,ab=0,ab0,=0,0,a0,c=0,c0,ab=0,ab0,=0,0,a0,c=0,c0,ab=0,ab0,=0,0,a0,c=0,c0,ab=0,ab0,=0,0,a0,c=0,c0,ab=0,ab0,=0,0,有一个交点,有两个相等的实数根,b2-4ac=0,没有交点,没有实数根,b2-4ac0,若两交点坐标分别为(x1,0)、(x2,0)则x1+x2,x1x2,两交点的距离为x1-x2,y=ax2+bx+c,y=a(x-h)2+k,y=a(x-x1)(x-x2),一、定义,二、图象特点和性质,三、解析式的求法,一、基础知识巩固练习:,例1、填空:(1)二次函数y=x2-x-6的图象顶点坐标是_对称轴是_,当函数值y随x的增大而减小时,x的取值范围是x0,3个,(三)图象位置与a、b、c、的正负关系,例4、已知二次函数y=ax2+bx+c的最大值是2,图象顶点在直线y=x+1上,并且图象经过点(3,-6)。求a、b、c。,解:二次函数的最大值是2抛物线的顶点纵坐标为2又抛物线的顶点在直线y=x+1上当y=2时,x=1顶点坐标为(1,2)设二次函数的解析式为y=a(x-1)2+2又图象经过点(3,-6)-6=a(3-1)2+2a=-2二次函数的解析式为y=-2(x-1)2+2即:y=-2x2+4x,(四)根据函数性质求函数解析式,例5、已知二次函数y=ax2-5x+c的图象如图。,(1)、当x为何值时,y随x的增大而增大;,(2)、当x为何值时,y0。,(3)、求它的解析式和顶点坐标;,例6:已知抛物线y=x2-2x-8,(1)求证:该抛物线与x轴一定有两个交点;(2)若该抛物线与x轴的两个交点分别为A、B,且它的顶点为P,求ABP的面积。,(1)抛物线y=2(x-1/2)2+1的开口向,对称轴,顶点坐标是(2)若抛物线y=a(x+m)2+n开口向下,顶点在第四象限,则a0,m0,n0。,上,X=1/2,(1/2,1),如图,在一面靠墙的空地上用长为24米的篱笆,围成中间隔有二道篱笆的长方形花圃,设花圃的宽AB为x米,面积为S平方米。(1)求S与x的函数关系式及自变量的取值范围;(2)当x取何值时所围成的花圃面积最大,最大值是多少?(3)若墙的最大可用长度为8米,则求围成花圃的最大面积。,解:,(1)AB为x米、篱笆长为24米花圃宽为(244x)米,(3)墙的可用长度为8米,(2)当x时,S最大值36(平方米),Sx(244x)4x224x(0x6),0244x64x6,当x4cm时,S最大值32平方米,某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:每涨价1元,每星期少卖出10件;每降价1元,每星期可多卖出20件,已知商品的进价为每件40元,如何定价才能使利润最大?,来到商场,请大家带着以下几个问题读题,(1)题目中有几种调整价格的方法?(2)题目涉及到哪些变量?哪一个量是自变量?哪些量随之发生了变化?,某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:每涨价1元,每星期少卖出10件;每降价1元,每星期可多卖出18件,已知商品的进价为每件40元,如何定价才能使利润最大?,来到商场,分析:,调整价格包括涨价和降价两种情况,先来看涨价的情况:设每件涨价x元,则每星期售出商品的利润y也随之变化,我们先来确定y与x的函数关系式。涨价x元时则每星期少卖件,实际卖出件,销额为元,买进商品需付元因此,所得利润为元,10 x,(300-10 x),(60+x)(300-10 x),40(300-10 x),y=(60+x)(300-10 x)-40(300-10 x),即,(0X30),(0X30),所以,当定价为65元时,利润最大,最大利润为6250元,在降价的情况下,最大利润是多少?请你参考(1)的过程得出答案。,解:设降价x元时利润最大,则每星期可多卖18x件,实际卖出(300+18x)件,销售额为(60-x)(300+18x)元,买进商品需付40(300-10 x)元,因此,得利润,答:定价为元时,利润最大,最大利润为6050元,由(1)(2)的讨论及现在的销售情况,你知道应该如何定价能使利润最大了吗

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论