




已阅读5页,还剩1页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2020学年度高二上学期期中数学试题(理科)一、选择题(每小题5分,共60分)1.复数Z=1+ai在复平面对应点在第一象限,且则Z的虚部为( ) A、2 B、4 C 、2i D、4i2.下面几种推理过程是演绎推理的是()A某校高二有10个班,1班62人,2班61人,3班62人,推测各班人数都超过60人B根据三角形的性质,可以推测空间四面体的性质C平行四边形对角线互相平分,矩形是平行四边形,所以矩形的对角线互相平分D在数列an中,a1=1,an+1=,nN*,计算a2,a3,由此归纳出an的通项公式3.设,则有 ( )A B. C D. 的大小不定4.用反证法证明命题“若整系数一元二次方程ax2+bx+c=0(a0)有有理根,那么a,b,c中至少有一个是偶数”时,下列假设中正确的是()A假设a,b,c不都是偶数 B假设a,b,c都不是偶数C假设a,b,c至多有一个是偶数 D假设a,b,c至多有两个是偶数( )A、1 B、-1 C、i D、-i6. 6个人排成一排,其中甲乙相邻且丙丁不相邻,不同的排法共有( )种A 60种 B 360种 C 720种 D 144种7.设函数f(x)=xsinx+cosx的图象在点(t,f(t)处切线的斜率为k,则函数k=g(t)的部分图象为()ABCD8.曲线y=ex,y=ex和直线x=1围成的图形面积是()Ae+2 Be+2 Ce+ De29.甲,乙,丙,丁,戊5名学生进行某种劳动技术比赛,决出第1名到第5名的名次(无并列)甲乙两名参赛者去询问成绩,回答者对甲说“很遗憾,你和乙都没有得到冠军”;对乙说“你当然不是最差的”从这个人的回答中分析,5人的名次情况共有()种A54 B48 C36 D7210.函数f(x)=1nxx3+1的零点个数为()A0 B1 C2 D311.设函数 当 时取得极大值,当 时取得极小值,则取值范围( )A、 (1,4) B、(,1) C、(,) D、(,1)12.( )A、 B 、 C、 D、二、填空题(每小题5分,共20分)13. 函数f(x)=x32x2+ax+3在1,2上单调递增,则实数a的取值范围为_. 14.计算的结果是 15. A,B,C,D,E排成一列,要求A,B,C在排列中的顺序为A,B,C或者C,B,A(可以不相邻),这样的排列有_种16.直线y=a分别与y=2x+2,y=x+lnx交于A,B两点,则最小值为_.三、解答题(共70分,17题10分,其余各题12分)17.阅读下面材料:根据两角和与差的正弦公式,有sin(+)=sincos+cossin sin()=sincoscossin 由+得sin(+)+sin()=2sincos 令+=A,=B 有=,=代入得sinA+sinB=2sincos(1)类比上述推证方法,根据两角和与差的余弦公式,证明:cosA+cosB=2coscos (2)求函数y=cos2xcos(2x+)的最大值18.设复数,复数,且在复平面上所对应点在直线上,求的最大值。19.已知数列(1)计算S1,S2,S3,S4;(2)猜想Sn的表达式,并用数学归纳法证明20.已知甲、乙、丙、丁、戊、己等6人.(结果用数字作答)(1)邀请这6人去参加一项活动,必须有人去,去几人自行决定,共有多少种不同的情形?(2)将这6人作为辅导员安排到3项不同的活动中,每项活动至少安排1名辅导员,求丁、戊、己恰好被安排在同一项活动中的概率。21.已知函数.(1)若,求曲线在点处的切线方程;(2)若函数的图象与函数的图象在区间上有公共点,求实数的取值范围.22.已知f(x)=xlnx(1) 若存在 使得 成立,求a的范围(2)设0a1或xg(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 地产项目资金管理规定
- 时尚男装设计创意方案
- 企业供应链管理流程规
- 艺术金融统计学考研备考心得分享
- 地下生物的生活规划
- 嵌入式硬件指南规定
- 云计算智能化管控方案
- 零售业商品管理细则
- 2025西安经开金融控股有限公司招聘笔试参考题库附答案解析
- 2025年眼科学科理论知识检测答案及解析
- 分子生物学检验技术第一章分子生物学检验技术绪论课件
- 住宅外墙饰面层损伤特性分析与防治
- 足浴店租赁合同
- 2025-2030中国术中神经生理监测行业市场发展趋势与前景展望战略研究报告
- 《YS-T621-2021百叶窗用铝合金带、箔材》
- 卫生院厉行节约、降低运营成本实施方案
- 模块2 电阻式传感器
- T-GDEIIA 56-2024 垂直起降低空航空器起降场基础设施配置技术要求
- 《CRISPR-Cas9及基因技术》课件
- 宁夏银川九中教育集团阅海一校区2024-2025学年上学期七年级期末数学试卷
- 亚朵酒店前台培训
评论
0/150
提交评论