全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
3.3.2利用导数研究函数的极值(1)一、 学习目标及学法指导1.了解函数极值的概念,会从几何直观理解函数的极值与导数的关系,并会灵活应用.2.掌握函数极值的判定及求法.3.掌握函数在某一点取得极值的条件.【学法指导】函数的极值反映的是函数在某点附近的性质,是局部性质.函数极值可以在函数图象上“眼见为实”,通过研究极值初步体会函数的导数的作用.二、预习案1.极值点与极值(1)极小值点与极小值如图,函数yf(x)在点xa的函数值f(a)比它在点xa附近其他点的函数值都小,f(a)0;而且在点xa附近的左侧 ,右侧 ,则把点a叫做函数yf(x)的极小值点,f(a)叫做函数yf(x)的极小值.(2)极大值点与极大值2.求函数yf(x)的极值的方法解方程f(x)0,当f(x0)0时:(1)如果在x0附近的左侧f(x)0,右侧f(x)0,那么f(x0)是 .(2)如果在x0附近的左侧f(x)0,右侧f(x)0,那么f(x0)是 .三、课中案引言“横看成岭侧成峰,远近高低各不同”,说的是庐山的高低起伏,错落有致,在群山中,各个山峰的顶端,虽然不一定是群山的最高处,但它却是其附近的最高点.那么每个山峰附近的走势如何?与导数有什么关系?探究点一函数的极值与导数的关系问题1如图观察,函数yf(x)在d、e、f、g、h、i等点处的函数值与这些点附近的函数值有什么关系?yf(x)在这些点处的导数值是多少?在这些点附近,yf(x)的导数的符号有什么规律?问题2函数的极大值一定大于极小值吗?在区间内可导函数的极大值和极小值是唯一的吗?函数f(x)的定义域为开区间(a,b),导函数f(x)在(a,b)内的图象如图所示,则函数f(x)在开区间(a,b)内有 个极小值点.问题3若某点处的导数值为零,那么,此点一定是极值点吗?举例说明.思考例1求函数f(x)x33x29x5的极值.跟踪训练1求函数f(x)3ln x的极值.探究点二利用函数极值确定参数的值问题已知函数的极值,如何确定函数解析式中的参数?例2已知f(x)x33ax2bxa2在x1时有极值0,求常数a,b的值.跟踪训练2设x1与x2是函数f(x)aln xbx2x的两个极值点.(1)试确定常数a和b的值;(2)判断x1,x2是函数f(x)的极大值点还是极小值点,并说明理由.探究点三函数极值的综合应用例3设函数f(x)x36x5,xR.(1)求函数f(x)的单调区间和极值;(2)若关于x的方程f(x)a有三个不同的实根,求实数a的取值范围.跟踪训练3若函数f(x)2x36xk在R上只有一个零点,求常数k的取值范围.四、课后案1.“函数yf(x)在一点的导数值为0”是“函数yf(x)在这点取得极值”的 ()A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件2.下列函数存在极值的是 ()A.y B.yxex C.yx3x22x3 D.yx33.已知f(x)x3ax2(a6)x1有极大值和极小值,则a的取值范围为 ()A.1a2 B.3a6 C.a2 D.a64.直线ya与函数yx33x的图象有三个相异的交点,则a的取值范围是_.【课堂小结】1.在极值的定义中,取得极值的点称为极值点,极值点指的是自变量的值,极值指的是函数值.2.函数的极值是函数的局部性质.可导函数f(x
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 【正版授权】 IEC 60749-22-2:2025 EN-FR Semiconductor devices - Mechanical and climatic test methods - Part 22-2: Bond strength - Wire bond shear test methods
- 大数据分析软件开发实践
- 测绘数据质量控制流程优化
- 自动化系统抗干扰设计
- 物流配送模式创新研究
- 广告的租赁合同范本
- 法拍房中介合同范本
- 游船项目承包协议书
- 工程委托代管协议书
- 湖南对口援藏协议书
- 2025年婴幼儿发展引导员理论考核试题及答案
- 2025秋大象版(2017)小学科学五年级上册期末测试卷附答案(共3套)
- 2025年消防工程师真题及答案
- 黑龙江省哈尔滨市第三十二中学2025-2026学年高二上学期11月期中考试语文试题(原卷版)
- 2025年浙江省住院医师规范化培训结业考核超声波训练题及答案
- 2025年四川省泸州市中考英语试卷
- 技术经纪人培训教程大纲
- 2025国泰租赁有限公司招聘笔试历年备考题库附带答案详解试卷3套
- 视频监控系统工程监理细则
- 2025天津滨海传媒发展有限公司招聘13人笔试考试参考题库及答案解析
- 2025年变电设备检修工(中级)技能鉴定理论考试题库(含答案)
评论
0/150
提交评论