Probabilistic Robotics 第二章总结_第1页
Probabilistic Robotics 第二章总结_第2页
Probabilistic Robotics 第二章总结_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

key topic 13360 robot environment interaction1状态环境are characterized by state。状态xState at time t XT1) Typical State Variablesrobot pose : 6 state variables :(x、y、z)for cartesian coordinates;(pitch,roll,yaw)for angular orientation(kinematic state)configuration of the robots actuators。(kinematic state)robot velocity and the velocities of its joints . 6 variables,each for 1 pose variable。(动态状态)location and features of surrounding objects in the environment。location and veloces of moving objects and people。休眠号of others。2)完全状态Best predictor of the future。completed ness entails that knowledge of past States,measurements or controls carry no additional information that would help us to predict that3) Incomplete StateIn practice,it is impossible to specify a complete state for any realistic robot system。Therefore,practical implementations single out a small subset of all state variables . in completed ness4) Hybrid State SpaceState can be continuous (e.g .robot pose),can be discrete (e.g .sensor broken or not)。state spaces that contain both continuous and discrete variables are called hybrid state spaces。2 Environment Interaction1)two fundamental types of interaction between a robot and its environment :a)robot influence the state of environment(via actuator)控件行为。Always execute a control action,even when no motor is moved。b)robot gather state info from environment(via sensor)Percept,observation or measurement。Always have delays。2) Two different data streams:A) Measurement data:ztb)控制data:ut3 Probabilistic Generative Lawsthe probability law character izing the evolution of state :P (XT | x0: t-1,z 1: t-1,u 13360t)Depending on all past States,measurements and controls。If state x is complete、P (XT | x0: t-1,z 13360t-1,u 13360t)=pxt XT-1,ut)状态转移Pztx033369t,z 1: t-1,u 1:t=pzxtmeasurement probability4 Belief Distributionsa belief reflects the robot s internal knowledge about the state of the environment .a belief,or state of knowledge with regards to a state should be distinguished from the true state itself .we denote belief over a state variable XT by bel(XT),which is an abbreviation for the posteriorBelxt=p(xt|z1:t,u1:t)assumed that belief is taken after incorporating the measurement ZT。we denote posterior before incoorporating ZT as follows :Belxt=pxtz1:t-1,u1:t)which is also referred to as prediction in the context of probability filtering。calculating bel(XT)from be lxt is called correction or the measurement update。Key Topic 2:Bayes FiltersThe Bayes Filter Algorithm1: algorithm Bayes _ filter(be lxt-1,ut,ZT) :2:for all XT do3: be lxt=pxtut,XT-1be lxt-1dx43360 be lxt=pzxtbelxt5:endfor6:return belxtthe algorithm has two essential steps . first step is called control update,or prediction . the second step is called the measurement update。to compute the posterior belief recursively,the algorithm requires an initial be

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论