全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
形如的二元二次多项式的因式分解 分解形如的多项式,常用的方法有:求根法、待定系数法、双十字相乘法和双零分解法。当然结合多项式的特点可以采用灵活的方法,如若已知它的一个因式,可用分析二次项和常数项的方法,较容易的求得。现举例说明:方法一、求根法利用求根法因式分解,形如的二元二次多项式可看成关于(或)的一元二次多项式。用求根公式求出两根,则原式。在实数范围内,原多项式分解成两个一次因式,必须是关于的方程的判别式是的一次式的完全平方式,为此这个判别式的判别式必须是0。例1、为何值时,能分解成两个一次式的乘积,并进行分解。分析:把上面的多项式看成的一元二次式,令这个一元二次式为0,解出的两个值,则原式6,这里只须研究何值时,是的一次式即可。解:设0,把此式看成关于的一元二次方程,则该方程的判别式:,要使方程的解为的一次式,必须为完全平方式,那么判别式的判别式必须是零。,(1)、当时,由解得则原式(2)、当时,由解得则原式练习: 把分解因式答案:原式方法二:待定系数法用待定系数法因式分解的一般步骤:1、 根据多项式的特点,确定所能分解成的形式。要尽量减少待定系数的个数,以利求解。2、 利用多项式恒等定理,列出以待定系数为未知数的方程或方程组。3、 解方程组,如方程或方程组有解,则原式可以分解为所设的形式;如果无解,则原方程组不能分解为所设的形式。如果方程组有解,把解得的待定系数的数值代入所设的分解式中。例2、为何值时,多项式可分解为两个一次因式的积。分析:先设可分解成两个一次式,原式中的是的项未知系数。为使待定系数尽量少,可先考虑,所以可设:原式,也可以先考虑,所以可设:原式,这里只解前者。解:设 由两边对应项系数相等得:,解此方程组得或当时,原式可分解为;当时,原式可分解为练习:为何值时,能分解成两个一次式的乘积,并进行分解。答案:解得原式可分解为说明:上面方法是常用的两种方法,特别是求待定系数很有效;不含待定系数的也可用双十字相乘法。方法三、双十字相乘法双十字相乘法即运用两次十字相乘法,第一次运用十字相乘法将多项式中的二次齐次式分解因式,然后再运用一次十字相乘法。其理论依据:若可分解为,则当时,例3、把分解因式。解:可先用十字相乘法,把分解, ,然后再用十字相乘法,于是原式。练习:分解因式答案:原式方法四、双零分解法理论依据:若可分解为,则当时有;当时有。因此在分解上述二元二次多项式时,可令得关于的二次三项式分解为;再令得关于的二次三项式并分解为;注意这里两分解式中的常数项应相同,如果不同就要变形使其相同。这时有。例4、分解因式解:令有;令有所以有练习:分解因式答案:原式 方法五:分析二次项、常数项法若已知它的一个因式,可用分析二次项和常数项的方法,较容易的求得。例5、若多项式有一个因式,则另一个因式为。解:由于多项式有一个因式,且原式二次项中含有和,所以另一个因式中必有一次项;同时
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 兰州小学教师招聘2022年考试真题及答案解析2
- 图书馆知识竞赛试题
- 幼师课件成品安全小卫士
- 幼儿园食品安全课件-1
- 针对内蒙古民歌保护与开发的几点思考
- 健康养生常识测试与答案详解
- 法律服务行业廉洁从业规范测试题库及答案解析
- 工人岗前培训测试题及答案参考
- T∕SAASS 275-2025 滨海轻度盐碱土壤多源固碳协同小麦增产提质施肥技术规程
- 教育心理学经典测试题及答案解析
- 金融危机教学课件
- 2025年建行专业考试题库
- 中建三局安装分公司电气工程工艺标准库
- GB/T 45846-2025标准大气
- GB/T 45800.2-2025全国一体化政务大数据体系第2部分:数据共享交换要求
- (2025)辐射安全与防护培训考试题库(含参考答案)
- 血症中医内科课件
- 五上语文《快乐读书吧-民间故事》知识点
- 专利基础知识讲座课件
- 中文版儿童睡眠习惯问卷CSHQ 含评分维度
- GB/T 3241.1-2025电声学倍频程和分数倍频程滤波器第1部分:规范
评论
0/150
提交评论