已阅读5页,还剩2页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2019-2020学年北师大版七年级上第四章 素养提升 过程复习卷(五)A卷姓名:_ 班级:_ 成绩:_一、单选题1 . 下列说法中,正确的是( )A直线比射线长B经过一点可以画两条直线C平角是一条直线D两条直线相交,只有一个交点2 . 如图,一艘货轮由A地沿北偏东45方向航行到C地,在C地改变航向航行到B地,此时观测到C地位于B地北偏西63方向上,则C的度数为( )A99B108C118D1283 . 点A,B,C,D,O的位置如图所示,下列结论中,错误的是( )AAOB50BOB平分AOCCBOCODAOB与BOD互补4 . 已知AB=10,C是射线AB上一点,且AC=3BC,则BC的长为( )A2.5BC2.5或5D或55 . 如图,下列说法正确的有( )(1)直线BA和直线AB是同一条直线;(2)射线AC和射线AD是同一条射线;(3)三条直线两两相交时,一定有三个交点.A1个B2个C3个D4个6 . 如图,直线 AD,BE 相交于点 O,COAD 于点 O,OF 平分BOC若AOB=32,则AOF 的度数为A29B30 C. 31C327 . 课堂上,老师把教学用的两块三角板叠放在一起,得到如图所示的图形,其中三角形的个数为( )A2B3C5D6二、填空题8 . 下列说法:两点确定一条直线;两点之间,线段最短;若AOCAOB,则射线OC是AOB的平分线;连接两点之间的线段叫做这两点间的距离;学校在小明家南偏东25方向上,则小明家在学校北偏西25方向上.其中正确的有_个9 . 如图,的平分线与的平分线交于点,则的度数是_10 . 如图,已知线段AB=6延长线段AB到C,使BC=2AB,点D是AC的中点,则BD=_11 . 判断题:(1)小于平角的角叫做钝角。(2)两条射线组成的图形叫做角。(3)平分一个角的射线叫做角的平分线。(4)因为钝角必然大于直角,所以大于直角的角都是钝角。(5)互补的两个角一定有一个是钝角,另一个是锐角。(6)如果两个角都是钝角,那么这两个角相等。(7)锐角和钝角之和是平角。(8)互余的两个角一定都是锐角。(9)如果1+2=180,2+3=180,则1=312 . 平面上有三个点,过其中任意两点作一条直线,可以画_条直线.13 . 4839+6741=_,41.2= _三、解答题14 . 已知,按如图1所示摆放,将OA、OC边重合在直线MN上,OB、OD边在直线MN的两侧;(1)保持不动,将绕点O旋转至如图2所示的位置,则=;=;(2)若按每分钟的速度绕点O逆时针方向旋转,按每分钟的速度也绕点O逆时针方向旋转,OC旋转到射线ON上时都停止运动,设旋转t分钟,计算(用t的代数式表示)。(3)保持不动,将绕点O逆时针方向旋转,若射线OE平分,射线OF平分,求的大小;15 . 如图,已知D为AC的中点,DB3cm,BC7cm,求线段AC的长16 . 已知:如图,线段AB.(1)根据下列语句顺次画图.延长线段AB至C,使BC=3AB,画出线段AC的中点D.(2)请回答:图中有几条线段;写出图中所有相等的线段.17 . 已知直线AB和CD相交于O点,COOE,OF平分AOE,COF=34,求BOD的度数18 . 如图,O为直线AB上一点,OD平分AOC,DOE90(1)1+4;(2)若225,则4;(3)判断OE是否平分BOC,并说明理由19 . 已知平面上点A,B,C,D.按下列要求画出图形:(1)作直线AB,射线CB:(2)连接AD并反向延长至点E,使得AE = AD.20 . 如图,已知10,点是线段上一动点(不与、重合),点是线段的中点,点是线段
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 国有企业绩效考核中存在的问题与解决策略
- 浅析科技型企业人力资源的特殊性与管理
- 公共管理目标
- 企业管理应如何坚持以人为本(★)
- 企业鼓励创新的组织机制研究
- 事业单位人才队伍建设存在的问题及对策建议思考
- 基于心理契约的人力资源管理研究
- 双因素理论精彩解读
- 医院人力资源管理的信息化建设探讨
- 对国有企业工会工作的思考
- SMT行业的印刷机DEK
- 旅游地接培训课件
- 城市供热热力管网课程设计
- 高铁变电所高压电器的运行与维护-避雷器的运行与维护
- 工程验收单 Microsoft Word 文档
- 生物信息学-生物信息数据库及其信息检索教学课件
- 2023年云南大理州建设投资(集团)有限公司招聘笔试题库含答案解析
- 农场问题分析
- FZ/T 54082-2015锦纶6膨体长丝(BCF)
- 小学数学西南师大六年级上册七负数的初步认识 《正负数》
- 《爆破安全技术》课件
评论
0/150
提交评论