




已阅读5页,还剩2页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
姓名 学号 学院 专业 座位号 ( 密 封 线 内 不 答 题 )密封线线_ _ 诚信应考,考试作弊将带来严重后果! 华南理工大学2011年期末考试试卷(B)卷弹性力学注意事项:1. 考前请将密封线内各项信息填写清楚; 2. 所有答案请直接答在答题纸上; 3考试形式:闭卷; 4. 本试卷共三大题,满分100分,考试时间120分钟。题 号一二三总分得 分评卷人一、简答题(共20分)1、五个基本假定在建立弹性力学基本方程时有什么用途?(10分)答:1、连续性假定:引用这一假定后,物体中的应力、应变和位移等物理量就可以看成是连续的,因此,建立弹性力学的基本方程时就可以用坐标的连续函数来表示他们的变化规律。 (2分)2、完全弹性假定:引用这一完全弹性的假定还包含形变与形变引起的正应力成正比的含义,亦即二者成线性的关系,符合胡克定律,从而使物理方程成为线性的方程。 (4分)3、均匀性假定:在该假定下,所研究的物体内部各点的物理性质显然都是相同的。因此,反映这些物理性质的弹性常数(如弹性模量E和泊松比等)就不随位置坐标而变化。 (6分)4、各向同性假定:所谓“各向同性”是指物体的物理性质在各个方向上都是相同的。进一步地说,就是物体的弹性常数也不随方向而变化。 (8分)5、小变形假定:我们研究物体受力后的平衡问题时,不用考虑物体尺寸的改变而仍然按照原来的尺寸和形状进行计算。同时,在研究物体的变形和位移时,可以将他们的二次幂或乘积略去不计,使得弹性力学中的微分方程都简化为线性微分方程。 在上述假定下,弹性力学问题都化为线性问题,从而可以应用叠加原理。 (10分)2、在导出平面问题的三套基本方程时,分别应用了哪些基本假定?这些方程的适用条件是什么?(5分)答:1、在导出平面问题的平衡微分方程和几何方程时应用的基本假定是:物体的连续性,小变形和均匀性。在两种平面问题中,平衡微分方程和几何方程都适用。 2、在导出平面问题的物理方程时应用的基本假定是:物体的连续性,完全弹性,均匀性,小变形和各向同性,即物体为小变形的理想弹性体。 在两种平面问题中的物理方程不一样,如果将平面应力问题的物理方程中的E换为,换为,就得到平面应变问题的物理方程。3、试分析简支梁受均布荷载时,平面截面假设是否成立?(5分)解:弹性力学解答和材料力学解答的差别,是由于各自解法不同。简言之,弹性力学的解法,是严格考虑区域内的平衡微分方程,几何方程和物理方程,以及边界上的边界条件而求解的,因而得出的解答是比较精确的。而在材料力学中没有严格考虑上述条件,因而得出的是近似解答。例如,材料力学中引用了平面假设而简化了几何关系,但这个假设对一般的梁是近似的。所以,严格来说,不成立。二、计算题(80分)2.1 如图所示为一矩形截面水坝,其右侧面受静水压力,顶部受集中力P作用。试写出水坝的应力边界条件。(10分)左侧面:代入应力边界条件公式:右侧面:代入应力边界条件公式:上端面为次要边界可由圣维南原理求解。Y方向力等效:对O点的力矩等效:X方向力等效:2.2图示矩形截面悬臂梁,在自由端受集中力P作用,不计体力。试根据材料力学公式,写出弯曲应力 和剪应力的表达式,并取挤压应力,然后说明这些表达式是否代表正确解。(10分) 解:1、 矩形悬臂梁发生弯曲变形,任意横截面上的玩具方程为,横截面对z轴(中性轴)的惯性矩为,根据材料力学公式,弯应力;该截面上的剪力为,剪应力;并取挤压应力。2、 经验证,上述表达式能满足平衡微分方衡也能满足相容方程再考察边界条件:在的主要边界上,应精确满足应力边界条件: 能满足。在次要边界上,列出三个积分的应力边界条件:满足应力边界条件。在次要边界上,列出三个积分的应力边界条件:满足应力条件。因此,它们是该问题的正确解答。2.3 图示矩形板,长为l ,高为h,体力不计,试证以下函数是应力函数,并指出能解决什么问题。式中k为常数。(10分)xyOlh 解:1、应力分量: 2、边界条件:上下边界显然上下边界无面力作用。左边界x=0:右边界x=l:结论:可解决悬臂梁左端受集中力问题。2.4图示悬臂梁,梁的横截面为矩形,其长度为L,宽度取为1,高度为2h,右端固定、左端自由,荷载分布在其右端上,其合力为P(不计体力),求梁的应力分量。(20分)解:这是一个平面应力问题,采用半逆解法求解。(1)选取应力函数。由材料力学可知,悬臂梁任一截面上的弯矩方程M(x)与截面位置坐标x成正比,而该截面上某点处的正应力又与该点的坐标y成正比,因此可设x=1xy (a) (3分)式中1的为待定常数。将式(a)对y积分两次,得=16xy3+yf1x+f2(x) (b)式中的f1x,f2(x)为x的待定函数,可由相容方程确定。将式(b)代入相容方程4=0, 得 d4f1(x)dx4y+d4f2(x)dx4=0 (5分)上式是y的一次方程,梁内所有的y值都应是满足它,可见它的系数和自由项都必须为零,即d4f1(x)dx4=0,d4f2(x)dx4=0积分上二式,得f1x=2x3+3x2+4x+5f2x=6x3+7x2+8x+9式中2-9为待定的积分常数。将f1x,f2x代入式(b),得应力函数为=16xy3+2x3+3x2+4x+5y+6x3+7x2+8x+9.(c) (8分)(2)应力分量的表达式 x=1xy,y=62y+6x+23y+7 xy=-121y2-32x2-23x-4 (10分)(3)考察应力边界条件:以确定各系数,自由端无水平力;上、下部无荷载;自由端的剪力之和为P,得边界条件xx=0=0 ,自然满足;xyy=h=0 ,得-1h22-32x2-23x-4=0; (12分)上式对x的任何值均应满足,因此得2=3=0,-1h22-4=0,即4=-1h22 (14分)yy=h=0,得66x+27=0X取任何值均应满足,因此得6=7=0. (16分)-hhxyx=0dy=-hh-121y2-1dy=-p将式(e)代入上式积分,得-hh121y2-121h2dy=p计算得 1=-3P2h3=-PIz, 1=-121h2=12PIzh2 (18分)其中Iz=12h312=2h3/3,横截面对Z轴的惯性矩。最后得应力分量为 x=-PIxxy,y=0 xy=-P2Ixh2-y2 (20分)2.5如图所示楔形体右侧面受均布荷载q作用,试求应力分量。(20分) 【解】(1)楔形体内任一点的应力分量决定于q、,其中q的量纲为NL-2,与应力的量纲相同。因此,各应力分量的表达式只可能取Kq的形式,而K是以,表示的无量纲函数,亦即应力表达式中不能出现,再由知,应力函数应是的函数乘以,可设 (a)将式(a)代入双调和方程,得 ,=0,上式的通解为 ,将上式代入式(a),得应力函数为。 (b)(2)应力表达式为 (c)(3)应力边界条件 ,得2(A+D)=q ; (d) ,得Acos2+B sin2+C+D=0, (e),得2BC=0, (f),2Asin22Bcos2=0 。 (g)联立求解式(d)(g),得各系数 ,。将系数代入(c),得应力分量 (h) 2.6 半平面体表面上受有均
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 农发行长沙市天心区2025秋招英文面试题库及高分回答
- 农发行驻马店市上蔡县2025秋招英文面试题库及高分回答
- 农发行商洛市洛南县2025秋招结构化面试15问及话术
- 农发行信阳市固始县2025秋招笔试英文行测高频题含答案
- 农发行徐州市邳州市2025秋招群面模拟题及高分话术
- 国家能源洛阳市老城区2025秋招面试典型题目及答案
- 国家能源临沂市河东区2025秋招笔试言语理解与表达题专练及答案
- 国家能源朝阳市朝阳县2025秋招半结构化面试模拟30问及答案
- 双方合作协议书 15篇
- 冬季预防传染病讲话稿15篇
- JG/T 9-1999钢椼架检验及验收标准
- JG/T 234-2008建筑装饰用搪瓷钢板
- 网络虚拟财产刑法保护的困境与突破:基于法理与实践的双重视角
- 股权代持协议(模板)8篇
- 《AI创意课件之设计》课件
- 会计中级职称《财务管理》电子书
- 河南豫信电科所属公司招聘笔试题库2025
- 小学生科普恐龙知识课件
- 2025年广东省房屋安全鉴定员理论考试题库-上(单选题)
- 高考文言文120个常见实词积累练习(学生版)
- 《STEMI再灌注治疗策略》课件
评论
0/150
提交评论