全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
函 数 解 析 式的常见几种 求 法 一、 配凑法:已知复合函数的表达式,求的解析式,的表达式容易配成的运算形式时,常用配凑法。但要注意所求函数的定义域不是原复合函数的定义域,而是的值域。 例2 已知,求 的解析式解:, 二、 待定系数法:在已知函数解析式的构造时,可用待定系数法。例1 设是一次函数,且,求解:设 ,则 三、代入法:求已知函数关于某点或者某条直线的对称函数时,一般用代入法。例4已知:函数的图象关于点对称,求的解析式解:设为上任一点,且为关于点的对称点 则,解得: ,点在上 把代入得: 整理得 四、换元法:已知复合函数的表达式时,还可以用换元法求的解析式。与配凑法一样,要注意所换元的定义域的变化。例3 已知,求解:令,则, 五、构造方程组法:若已知的函数关系较为抽象简约,则可以对变量进行置换,设法构造方程组,通过解方程组求得函数解析式。例5 设求解 显然将换成,得: 解 联立的方程组,得:例6 设为偶函数,为奇函数,又试求的解析式解 为偶函数,为奇函数, 又 ,用替换得: 即 解 联立的方程组,得 , 六、递推法:若题中所给条件含有某种递进关系,则可以递推得出系列关系式,然后通过迭加、迭乘或者迭代等运算求得函数解析式。例8 设是定义在上的函数,满足,对任意的自然数 都有,求 解 ,不妨令,得:,又 分别令式中的 得: 将上述各式相加得:, 七、赋值法:当题中所给变量较多,且含有“任意”等条件时,往往可以对具有“任意性”的变量进行赋值,使问题具体化、简单化,从而求得解析式。 例7 已知:,对于任意实数x、y,等式恒成立,求
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 【2021年】安徽省宣城市会计从业资格财经法规真题(含答案)
- 2025年颈椎案例分析试题及答案
- 2025年医学检验简单试题及答案
- 2025年电厂安全试题题库及答案
- 2025年小学语文五年级下册期末试题及答案
- 2025年复工复产安全培训试题附答案
- 钳工初级试题及答案解析(2025版)
- 2024基金从业资格-证券投资基金基础知识真题汇编
- 2025年河北省南宫市辅警招聘考试试题题库附答案详解(综合题)
- 备考2023年安徽省宣城市注册会计财务成本管理真题(含答案)
- GB/T 15704-2025道路车辆轻合金车轮冲击试验方法
- 公司物料丢失管理办法
- 刻章安全管理规章制度
- 2025年国家公务员考试《申论》题(行政执法卷)及参考答案
- 《中外历史纲要(下)》全册核心知识问答【提纲】
- 法院挂职人员管理办法
- 幼儿关于警察职业的课件
- 医院信息公开培训
- 临床无陪护病房护理标准化操作手册
- (高清版)DB62∕T 446-2019 河湖及水利工程土地划界标准
- 2025团员考试试题及答案
评论
0/150
提交评论