辽宁省2020年九年级上学期期中数学试题B卷_第1页
辽宁省2020年九年级上学期期中数学试题B卷_第2页
辽宁省2020年九年级上学期期中数学试题B卷_第3页
辽宁省2020年九年级上学期期中数学试题B卷_第4页
辽宁省2020年九年级上学期期中数学试题B卷_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

辽宁省2020年九年级上学期期中数学试题B卷姓名:_ 班级:_ 成绩:_一、单选题1 . 若抛物线 y=x2向下平移 1 个单位,则所得的抛物线解析式是( )Ay=x2+1By=(x+1)2Cy=x21Dy=(x1)22 . 下列平面图形中,既是轴对称图形又是中心对称图形的是( )ABCD3 . 已知抛物线的顶点坐标为(1,9),它与x轴交于A(2,0),B两点,则B点坐标为( )A(1,0)B(2,0)C(3,0)D(4,0)4 . 二次函数yax2+bx+c的图象如图所示,那么一次函数ycx+b的图象大致是( )ABCD5 . 如图,O为ABC的外接圆,AB为直径,ACBC,则A的度数为( )A30B40C45D606 . 已知抛物线yax2+bx+c与x轴的一个交点为(1,0),对称轴为直线x1,则该抛物线与x轴另一个交点坐标为( )A(3,0)B(2,0)C(2,0)D无法确定7 . 方程x(x3)+x30的解是( )A3B3,1C1D3,18 . 已知点P(x,y)在第二象限,|x|6,|y|8,则点P关于原点的对称点的坐标为( )A(6,8)B(6,8)C(6,8)D(6,8)9 . 下列说法正确的是( )A圆内接正六边形的边长与该圆的半径相等B在平面直角坐标系中,不同的坐标可以表示同一点C一元二次方程ax2+bx+c=0(a0)一定有实数根D将ABC绕A点按顺时针方向旋转60得ADE,则ABC与ADE不全等10 . 下列函数中:yax2(a0);y(a1)x2(a1);y2x+a2(a0);具有过原点,且当x0时,y随x增大而减小,这两个特征的有( )A1个B2个C3个D4个二、填空题11 . 有一棵月季,它的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干、小分支的总数是73.设每个支干长出x个小分支,根据题意可列方程为_.12 . 如图,ABC是等腰直角三角形,BC是斜边,将ABP绕点A逆时针旋转后,能与ACP重合,如果AP=3,那么PP=_13 . 如图,在O中,直径AB的长是26,弦CDAB交AB于E,若OE=5,则CD的长度为 ,若B=35,则AOC= 14 . 若抛物线y=(xm)2+(m+1)的顶点在第一象限,则m的取值范围为_(15 . 将方程的两边同时开平方,得_,即_或_,所以_,_16 . 已知二次函数的顶点坐标及部分图象(如图所示),其中图象与横轴的正半轴交点为,由图象可知:当_时,函数值随着的增大而减小;关于的一元二次不等式的解是_三、解答题17 . 关于的一元二次方程有两实数根、求的取值范围;,求的取值18 . 如图,正方形网格中,ABC为格点三角形(即三角形的顶点都在格点上)(1)把ABC沿BA方向平移后,点A移到点A1,在网格中画出平移后得到的A1B1C1;(2)把A1B1C1绕点A1按逆时针方向旋转90,得到A1B2C2,在网格中画出旋转后的A1B2C219 . 如图,在直角坐标系中, B(0,8),D(10,0),一次函数y=x+的图象过C(16,n),与x轴交于A点。(1)求证:四边形ABCD为平行四边形;(2)将AOB绕点O顺时针旋转,旋转得A1OB1,问:能否使以点O、A1、D、B1为顶点的四边形是平行四边形?若能,求点A1的坐标;若不能,请说明理由;20 . 如图1,将两个等腰三角形和拼合在一起,其中,.(1)操作发现如图2,固定,把绕着顶点旋转,使点落在边上.填空:线段与的关系是位置关系:_;数量关系:_(2)变式探究当绕点旋转到图3的位置时,(1)中的结论还成立吗?请说明理由;(3)解决问题如图4,已知线段,线段,以为边作一个正方形,连接,随着边的变化,线段的长也会发生变化.请直接写出线段的取值范围.21 . 定义:如图1,抛物线与x轴交于A,B两点,点P在该抛物线上(P点与AB两点不重合),如果ABP中PA与PB两条边的三边满足其中一边是另一边倍,则称点P为抛物线的“好”点(1)命题:P(0,3)是抛物线的“好”点该命题是_(真或假)命题(2)如图2,已知抛物线C:与轴交于A,B两点,点P(1,2)是抛物线C的“好”点,求抛物线C的函数表达式(3)在(2)的条件下,点Q在抛物线C上,求满足条件SABQ=SABP的Q点(异于点P)的坐标22 . 为了节省材料,某水产养殖户利用水库的一角MON(MON=135)的两边为边,用总长为120m的围网在水库中围成了如图所示的三块区域,其中区域为直角三角形,区域为矩形,而且四边形OBDG为直角梯形(1)若这块区域的面积相等,则OB的长为m;(2)设OB=xm,四边形OBDG的面积为ym2,求y与x之的函数关系式,并注明自变量x的取值范围;x为何值时,y有最大值?最大值是多少?23 . 解方程:(1)(2)(配方法)(3)(用公式法)24 . 如图,已知抛物线y=ax2+bx+c(a0)的对称轴为直线x=1,且抛物线经过A(1,0),C(0,3)两点,抛物线与x轴的另一交点为A(1)若直线y=mx+n经过B、C两点,求直线BC和抛物线的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论