




已阅读5页,还剩44页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第一章数理统计基础,与概率论一样,数理统计也是研究大量随机现象的统计规律的一门数学学科,它以概率论为理论基础,根据试验或观察得到的数据,对研究对象的客观规律性作出种种合理的估计和科学的推断.数理统计主要研究两类问题:(1)试验的设计与研究,即如何合理有效地获得数据资料.(2)统计推断,即如何利用获得的数据资料,对所关心的统计问题作出尽可能有效可靠的判断.从本章起的接连六章,是数理统计学的初步,主要讲述估计与检验等原理,回归分析与方差分析,试验设计等统计方法.,1,1数理统计中的几个概念,1.1总体与个体,我们将研究对象的全体所构成的一个集合称为总体或母体,而把组成总体的每一单元成员称为个体.,如为研究某厂生产的电子元件的使用寿命分布情况,则总体为该厂生产的所有电子元件,而每一个该厂生产的电子元件都是一个个体.,2,在数理统计中,我们将研究对象的某项数量指标的值的全体称为总体,总体中的每个元素称为个体.,比如,对电子元件我们主要关心的是其使用寿命.而该厂生产的所有电子元件的使用寿命取值的全体,就构成了研究对象的全体,即总体,显然它是一个随机变量,常用X表示.,为方便起见,今后我们把总体与随机变量X等同起来看,即总体就是某随机变量X可能取值的全体.它客观上存在一个分布,但我们对其分布一无所知,或部分未知,正因为如此,才有必要对总体进行研究.,3,1.2简单随机样本,对总体进行研究,首先需要获取总体的有关信息.一般采用两种方法:,一是全面调查.如人口普查,该方法常要消耗大量的人力、物力、财力.有时甚至是不可能的,如测试某厂生产的所有电子元件的使用寿命.,二是抽样调查.抽样调查是按照一定的方法,从总体X中抽取n个个体.这是我们对总体掌握的信息.数理统计就是要利用这一信息,对总体进行分析、估计、推断.因此,要求抽取的这n个个体应具有很好的代表性.,4,按机会均等的原则随机地从客观存在的总体中抽取一些个体进行观察或测试的过程称为随机抽样.从总体中抽出的部分个体,叫做总体的一个样本.,从总体中抽取样本时,不仅要求每一个个体被抽到的机会均等,同时还要求每次的抽取是独立的,即每次抽样的结果不影响其他各次的抽样结果,同时也不受其他各次抽样结果的影响.这种抽样方法称为简单随机抽样.由简单随机抽样得到的样本叫做简单随机样本.往后如不作特别说明,提到“样本”总是指简单随机样本.,5,从总体X中抽取一个个体,就是对随机变量X进行一次试验.抽取n个个体就是对随机变量X进行n次试验,分别记为X1,X2,Xn.则样本就是n维随机变量(X1,X2,Xn).在一次抽样以后,(X1,X2,Xn)就有了一组确定的值(x1,x2,xn),称为样本观测值.样本观测值(x1,x2,xn)可以看着一个随机试验的一个结果,它的一切可能结果的全体构成一个样本空间,称为子样空间.,6,定义:设X是具有分布函数F(x)的随机变量,若X1,X2,Xn是具有同一分布函数F(x)的相互独立的随机变量,则称(X1,X2,Xn)为从分布函数(或总体F(x)、或总体X)得到的容量为n的简单随机样本,简称样本.它们的观察值(x1,x2,xn)称为样本值,又称为X的n个独立的观察值.,若(X1,X2,Xn)为X的一个样本,则(X1,X2,Xn)的联合分布函数为,若X具有概率密度p(x),则(X1,X2,Xn)的联合概率密度函数为,7,总体、样本、样本观察值的关系,总体,样本,样本观察值,?,理论分布,统计是从手中已有的资料样本观察值,去推断总体的情况总体分布。样本是联系两者的桥梁。总体分布决定了样本取值的概率规律,也就是样本取到样本观察值的规律,因而可以用样本观察值去推断总体,8,1.3统计量,定义:设(X1,X2,Xn)是来自总体X的一个样本,g(X1,X2,Xn)是关于X1,X2,Xn的一个连续函数且g(X1,X2,Xn)中不含有任何未知参数,则称g(X1,X2,Xn)是样本(X1,X2,Xn)的一个统计量.,设(x1,x2,xn)是相应于样本(X1,X2,Xn)的样本值,则g(x1,x2,xn)称是g(X1,X2,Xn)的观察值.,9,1.3常用的统计量,设(X1,X2,Xn)是来自总体X的一个样本,则,10,设(x1,x2,xn)是样本(X1,X2,Xn)的观察值,则,11,若总体均值E(X)存在,总体方差D(X)存在,则由X1,X2,Xn的独立性及同分布性,有,12,证明,定理:设总体X的均值为,方差为2,(X1,X2,Xn)是X的一个样本,则有,13,定理:设总体X的均值为E(X)=,方差D(X)=2,(X1,X2,Xn)是X的一个样本,则有,证明,14,15,解,因为,16,2数理统计中常用的三个分布,2.12分布,2.1.12分布的概念,17,2分布的的密度函数的示意图,18,2.1.22分布的构造,定理:设X1,X2,Xn是相互独立的随机变量,且XiN(0,1),则统计量,19,2.1.32分布的性质,定理:设122(n1),222(n2),且12与22相互独立,则12+222(n1+n2).,证明由分布的可加性即可证明.,定理:若22(n),则E(2)=n,D(2)=2n.,证明因XiN(0,1),故E(Xi2)=D(Xi)=1;D(Xi2)=E(Xi4)-E(Xi2)2=3-1=2,i=1,2,n于是,20,2.1.42分布的上分位点,对于(0,1)给定,称满足条件:,的点n2()为n2分布的上分位点.,21,2.2T分布,2.2.1T分布的概念,22,T分布的的密度函数的示意图,23,2.2.2T分布的构造,24,2.2.3T分布的性质,(1)f(t)关于t=0(纵轴)对称,且E(T)=0,D(T)0,(2)f(t)的极限为N(0,1)的密度函数,即,25,2.2.4T分布的上分位点,设Tt(n),对于(0,1)给定,称满足条件:,的点tn()为t分布的上分位点.,26,注:,27,2.3F分布,2.3.1F分布的概念,28,F分布的的密度函数的示意图,29,2.3.2F分布的构造,定理:设X2(n1),Y2(n2),且X,Y独立,则随机变量,30,2.3.3F分布的上分位点,设F(n1,n2),对于给定的a,0a1,称满足条件,的点F(n1,n2)为F分布的上分位点.,31,2.3.4F分布的性质,定理:,证明:设FF(n1,n2),则,得证!,32,解,因此有,33,试确定Z的分布.,解,由样本的同分布性知:,由此得:,由t分布的构造知:,34,35,3一个正态总体下的统计量的分布,证明,36,定理:设(X1,X2,Xn)是来自总体XN(,2)的一个样本,则,37,且它们表示的随机变量是相互独立的,故,证明,38,解,所以,39,解,查表得,则有,由于,40,4两个正态总体下的统计量
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 自考专业(工商企业管理)考试综合练习含答案详解(基础题)
- 2025年高压电工考试题库:安全事故应对事故应急通讯与协调试题
- 2025汉中洋县妇幼保健计划生育服务中心招聘考试备考试题及答案解析
- 2025年马鞍山和县人力资源和社会保障局公开招聘劳务派遣制工作人员1名笔试模拟试题及答案解析
- 2025云南省迪庆州检验检测院急需紧缺人才专项招引(5人)笔试参考题库附答案解析
- 2025广东中山火炬开发区人民医院招聘总会计师1人考试备考试题及答案解析
- 住院医师规范化培训规章制度执行职责
- 人教版五年级下册数学差异化教学计划
- 个人股权激励合同(标准版)
- 暖气组装合同(标准版)
- 人教版(2025新版)七年级下册数学第七章 相交线与平行线 单元测试卷(含答案)
- 厂房消防应急预案
- 景区开发政府战略框架协议书(2篇)
- 保洁投标书范本
- “雄鹰杯”全国小动物医师技能大赛考试题库(660题)
- 实验室隐患排查培训
- 九年级化学第三单元课题1分子和原子人教新课标版省公开课获奖课件说课比赛一等奖课件
- 宠物医疗器械创新与发展
- 《路由与交换技术》教学大纲
- 4《给植物画张“像”》教学设计-2024-2025学年科学一年级上册教科版
- 森林防火条例
评论
0/150
提交评论