




全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
分式的加减(提高)【学习目标】1能利用分式的基本性质通分2会进行同分母分式的加减法3会进行异分母分式的加减法【要点梳理】要点一、同分母分式的加减同分母分式相加减,分母不变,把分子相加减;上述法则可用式子表为:.要点诠释:(1)“把分子相加减”是把各分式的分子的整体相加减,即各个分子都应用括号,当分子是单项式时,括号可以省略;当分子是多项式时,特别是分子相减时,括号不能省,不然,容易导致符号上的错误. (2)分式的加减法运算的结果必须化成最简分式或整式.要点二、分式的通分与分数的通分类似,利用分式的基本性质,使分式的分子和分母同乘适当的整式,不改变分式的值,把分母不同的分式化成相同分母的分式,这样的分式变形叫做分式的通分.要点诠释:(1)通分的关键是确定各分式的最简公分母:一般取各分母所有因式的最高次幂的积作为公分母.(2)如果各分母都是单项式,那么最简公分母就是各系数的最小公倍数与相同字母的最高次幂的乘积;如果各分母都是多项式,就要先把它们分解因式,然后再找最简公分母.(3)约分和通分恰好是相反的两种变形,约分是对一个分式而言,而通分则是针对多个分式而言.要点三、异分母分式的加减异分母分式相加减,先通分,变为同分母的分式,再加减.上述法则可用式子表为:.要点诠释:(1)异分母的分式相加减,先通分是关键.通分后,异分母的分式加减法变成同分母分式的加减法.(2)异分母分式加减法的一般步骤:通分,进行同分母分式的加减运算,把结果化成最简分式.要点四、分式的混合运算与分数的加、减乘、除混合运算一样,分式的加、减乘、除混合运算,也是先算乘、除,后算加、减;遇到括号,先算括号内的,按先小括号,再中括号,最后大括号的顺序计算. 分式运算结果必须达到最简,能约分的要约分,保证结果是最简分式或整式.要点诠释:(1)正确运用运算法则:分式的乘除(包括乘方)、加减、符号变化法则是正确进行分式运算的基础,要牢牢掌握.(2)运算顺序:先算乘方,再算乘、除,最后算加、减,遇有括号,先算括号内的.(3)运算律:运算律包括加法和乘法的交换律、结合律,乘法对加法的分配律.能灵活运用运算律,将大大提高运算速度.【典型例题】类型一、同分母分式的加减1、计算:(1);(2);(3); (4)【答案与解析】解:(1)原式(2);(3);(4) 【总结升华】根据乘法交换律有,所以本题是三个同分母分式的加减法,根据法则:分母不变,分子相加减注意把分子看成一个整体用括号括起来,再加减仔细观察分母中与,与、与的互相转化中符号的变化类型二、异分母分式的加减2、(2014秋新罗区校级月考)计算:【答案与解析】解:原式=【总结升华】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键举一反三:【变式】计算(1);(2)【答案】解:(1);(2)原式 3、 化简【答案与解析】 解:原式 【总结升华】本题按照常规方法先将所有的分母进行因式分解,然后通分计算,不难发现:所有的分子计算较复杂通过观察不妨将每一个分式化简使它们的分子变得简单,然后再计算就非常的容易了所以,在进行分式化简时不能盲目地计算,首先应该观察分式的特点,然后选择合适的计算方法举一反三:【变式】某商场文具专柜以每支(为整数)元的价格购进一批“英雄”牌钢笔,决定每支加价2元销售,由于这种品牌的钢笔价格廉、质量好、外观美,很快就被销售一空,结账时,售货员发现这批钢笔的销售总额为(399805)元你能根据上面的信息求出文具专柜共购进了多少支钢笔吗?每支钢笔的进价是多少元?【答案】解:设文具专柜共购进了钢笔支,则因为为正整数,也为正整数,所以2是7的正约数,所以27或21所以5或1(不合题意,舍去)所以当5时,400即文具专柜共购进了400支钢笔,每支进价为5元类型三、分式的加减运算的应用4、 已知,求整式A,B【答案与解析】解法一:由已知得,即所以 所以解法二:等式两边同时乘以,得,令,则A1令,则B2所以A,B2【总结升华】解法一是利用多项式恒等,则对应项的系数分别相等,列出方程组,求出A,B的值解法二是运用特殊值法,因为多项式恒等,与取值无关,故令1,2简化式子,求出A,B的值举一反三:【变式】(2015春东台市校级期中)已知计算结果是,求常数A、B的值【答案】解:因为=所以,解得,所以常数A的值是1,B的值是2类型四、分式的混合运算5、(2016聊城)计算:()【
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 输液反应处理流程
- 移动互联网流量经营平台创新创业项目商业计划书
- 农副食品品牌文化展览与展示创新创业项目商业计划书
- 2025年广西钦州港经济技术开发区中学招聘教师考试笔试试题(含答案)
- 渔业金融服务创新创业项目商业计划书
- 2025年东莞市沙田镇第一小学招聘教师考试笔试试题(含答案)
- 2025年广播媒体融合传播效果与传播效果评价体系优化策略
- 2025年广播媒体融合转型中的新媒体运营与推广策略报告
- 2025年海洋生态保护与修复政策对海洋生态环境恢复力提升报告
- 2025年工业互联网平台边缘计算硬件架构产业技术发展趋势报告
- 2025海南省老干部服务管理中心招聘事业编制人员6人(第1号)考试备考题库及答案解析
- 2025年内江市总工会公开招聘工会社会工作者(14人)笔试模拟试题及答案解析
- 2025云南辅警笔试题目及答案
- 2025四川内江市总工会招聘工会社会工作者14人笔试备考试题及答案解析
- 2025-2026学年湘教版(2024)初中数学八年级上册教学计划及进度表
- 2025至2030中国公安行业发展趋势分析与未来投资战略咨询研究报告
- 2025年三支扶陕西试题及答案
- 新生儿持续性肺动脉高压个案护理
- bbc国际音标教学课件
- GB/T 45763-2025精细陶瓷陶瓷薄板室温弯曲强度试验方法三点弯曲或四点弯曲法
- 2025年新修订《治安管理处罚法》
评论
0/150
提交评论