最大泡压法测定溶液的表面张力_第1页
最大泡压法测定溶液的表面张力_第2页
最大泡压法测定溶液的表面张力_第3页
最大泡压法测定溶液的表面张力_第4页
最大泡压法测定溶液的表面张力_第5页
已阅读5页,还剩6页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

华 南 师 范 大 学 实 验 报 告学生姓名曾庆瑜学 号专 业化学(师范) 年级、班级2014级化教六班课程名称物理化学实验实验项目最大泡压法测定溶液的表面张力实验类型验证 设计 综合实验时间2017 年04月27日实验指导老师林晓明实验评分一、实验目的1、掌握最大泡压法测定表面张力的原理,了解影响表面张力测定的因素。2、了解弯曲液面下产生附加压力的本质,熟悉拉普拉斯方程,吉布斯吸附等温式,了解兰格缪尔单分子层吸附公式的应用。3、测定不同浓度正丁醇溶液的表面张力,计算饱和吸附量, 由表面张力的实验数据求正丁醇分子的截面积及吸附层的厚度。二、实验原理1、表面张力的产生:在液体的内部任何分子周围的吸引力是平衡的。但在液体表面层的分子却不相同。 如图所示:在液体表面层中,每个分子都受到垂直于液面并指向液体内部的不平衡力(如图所示)。这种吸引力有使表面积最小的趋势,要使液体表面积增大就必须要反抗分子的内向力而作功以增加分子位能。所以分子在表面层比在液体内部有较大的位能,这位能就是表面自由能。通常把增大一平方米表面所需的最大功A或增大一平方米所引起的表面自由能的变化值G称为单位表面的表面能,其单位为Jm-2。而把液体限制其表面增大以及力图使它收缩的单位直线长度上所作用的力,称为表面张力,其单位是N m-1。液体单位表面的表面能和它的表面张力在数值上是相等的。在任何两相界面处都存在表面张力。表面张力的方向是与界面相切,垂直作用于某一边界,方向指向使表面积缩小的一侧。液体的表面张力与温度有关,温度愈高,表面张力愈小。到达临界温度时,液体与气体不分,表面张力趋近于零。液体的表面张力与液体的纯度有关。在纯净的液体(溶剂)中如果掺进杂质(溶质),表面张力就要发生变化,其变化的大小决定于溶质的本性和加入量的多少。由于表面张力的存在,产生很多特殊界面现象。2、弯曲液面下的附加压力由于表面张力的作用,弯曲表面下的液体或气体与在平面下情况不同,前者受到附加的压力。如果液面是水平的,则表面张力也是水平的,平衡时,沿周界的表面张力互相抵消,此时液体表面内外压力相等,且等于表面上的外压力Po。若液面是弯曲的,平衡时表面张力将产生一合力Ps,而使弯曲液面下的液体所受实际压力与Po不同。当液面为凸形时,合力指向液体内部,液面下的液体受到的实际压力为当液面为凹形时,合力指向液体外部,液面下的液体受到的实际压力为,这一合力PS,即为弯曲表面受到的附加压力,附加压力的方向总是指向曲率中心。附加压力与表面张力的关系用拉普拉斯方程表示:式中为表面张力,R为弯曲表面的曲率半径,该公式是拉普拉斯方程的特殊式,适用于当弯曲表面刚好为半球形的情况。3、毛细现象 毛细现象则是弯曲液面下具有附加压力的直接结果。假设溶液在毛细管表面完全润湿,且液面为半球形,则由拉普拉斯方程以及毛细管中升高(或降低)的液柱高度所产生的压力,通过测量液柱高度即可求出液体的表面张力,这就是毛细管上升法测定溶液表面张力的原理。此方法要求管壁能被液体完全润湿,且液面呈半球形。4、最大泡压法测定溶液的表面张力实际上,最大泡压法测定溶液的表面张力是毛细管上升法的一个逆过程。其装置图如16-3所示,将待测表面张力的液体装于表面张力仪中,使毛细管的端面与液面相切,由于毛细现象液面即沿毛细管上升,打开抽气瓶的活塞缓缓抽气,系统减压,毛细管内液面上受到一个比表面张力仪瓶中液面上(即系统)大的压力,当此压力差附加压力(p p大气p系统)在毛细管端面上产生的作用力稍大于毛细管口液体的表面张力时,气泡就从毛细管口脱出,此附加压力与表面张力成正比,与气泡的曲率半径成反比,其关系式为拉普拉斯公式:如果毛细管半径很小,则形成的气泡基本上是球形的。当气泡开始形成时,表面几乎是平的,这时曲率半径最大;随着气泡的形成,曲率半径逐渐变小,直到形成半球形,这时曲率半径R和毛细管半径r相等,曲率半径达最小值,根据上式这时附加压力达最大值,气泡形成过程如图16-4所示。气泡进一步长大,R变大,附加压力则变小,直到气泡逸出。根据上式,R r时的最大附加压力为:对于同一套表面张力仪,毛细管半径r,测压液体密度、重力加速度都为定值,因此为了数据处理方便,将上述因子放在一起,用仪器常数K来表示,上式简化为:式中的仪器常数K可用已知表面张力的标准物质测得,通常用纯水来标定。5、溶液中的表面吸附-吸附现象的发生在定温下纯液体的表面张力为定值,只能依靠缩小表面积来降低自身的能量。而对于溶液,既可以改变其表面张力,也可以减小其面积来降低溶液表面的能量。通常以降低溶液表面张力的方法来降低溶液表面的能量。当加入某种溶质形成溶液时,表面张力发生变化,其变化的大小决定于溶质的性质和加入量的多少。根据能量最低原理,溶质能降低溶剂的表面张力时,表面层中溶质的浓度比溶液内部大;反之,溶质使溶剂的表面张力升高时,它在表面层中的浓度比在内部的浓度低,这种表面浓度与内部浓度不同的现象叫做溶液的表面吸附。在指定的温度和压力下,溶质的吸附量与溶液的表面张力及溶液的浓度之间的关系遵守吉布斯(Gibbs)吸附方程:式中,为溶质在表层的吸附量;为表面张力;C为吸附达到平衡时溶质在溶液中的浓度。当界面上被吸附分子的浓度增大时,它的排列方式在改变着,最后,当浓度足够大时,被吸附分子盖住了所有界面的位置,形成饱和吸附层。这样的吸附层是单分子层,随着表面活性物质的分子在界面上愈益紧密排列,则此界面的表面张力也就逐渐减小。以表面张力对浓度作图,可得到-C曲线。开始时随浓度增加而迅速下降,以后的变化比较缓慢。在-C曲线上任选一点a作切线,得到在该浓度点的斜率值,代入吉布斯吸附等温式,得到该浓度时的表面超量(吸附量),同理,可以得到其他浓度下对应的表面吸附量,以不同的浓度对其相应的可作出曲线, f(C)称为吸附等温线。饱和吸附量:对于正丁醇的吸附等温线,满足随浓度增加,吸附量开始显著增加,到一定浓度时,吸附量达到饱和,因此可以从吸附等温线得到正丁醇的饱和吸附量。也可以假定正丁醇在水溶液表面满足单分子层吸附。根据朗格谬尔(Langmuir)公式:为饱和吸附量,即表面被吸附物铺满一层分子时的,以C/对C作图,得一直线,该直线的斜率为1/。被吸附分子的截面积:So = 1 / (N) ( N为阿佛加得罗常数)。吸附层厚度: 溶质的密度,分子量M。三、实验仪器与试剂实验仪器:最大泡压法表面张力仪1套;吸耳球1个;移液管(50mL,1支、1mL,1支);烧杯(500mL,1只);温度计1支。实验试剂:正丁醇(AR);蒸馏水。四、实验步骤(一)仪器准备与检漏将表面张力仪容器和毛细管洗净、烘干。在恒温条件下将一定量蒸馏水注入表面张力仪中,调节液面,使毛细管口恰好与液面相切。打开抽气瓶活塞,使体系内的压力降低,当U型管测压计两端液面出现一定高度差时,关闭抽气瓶活塞,若23min内,压差计的压差不变,则说明体系不漏气,可以进行实验。(二)仪器常数的测量打开抽气瓶活塞,调节抽气速度,使气泡由毛细管尖端成单泡逸出,且每个气泡形成的时间约为5 10 s。当气泡刚脱离管端的一瞬间,压差计显示最大压差时,记录最大压力差,连续读取三次,取其平均值。再由手册中,查出实验温度时,水的表面张力,则仪器常数 (三)表面张力随溶液浓度变化的测定用移液管分别移取0.0500mL,0.150 mL,0.300 mL,0.600 mL,0.900 mL,1.50 mL,2.50 mL,3.50 mL,4.50 mL 正丁醇,移入9个50mL的容量瓶,配制成一定浓度的正丁醇溶液。然后由稀到浓依次移取一定量的正丁醇溶液,按照步骤2所述,置于表面张力仪中测定某浓度下正丁醇溶液的表面张力。随着正丁醇浓度的增加,测得的表面张力几乎不再随浓度发生变化。五、实验记录及数据处理1、将所测的实验数据及计算结果填入下表中:温度:24.5 正丁醇的密度=0.8097g/mL 相对分子质量M=74.12g/mol水的表面张力:71.97 10-3 N/m 仪器常数K:1.052正丁醇体积/ml溶液浓度/molL-1压力差p/cm/Nm-1(d/dC)/molm-2123平均值0蒸馏水6.896.786.866.840.07197-0.00.050.01096.516.516.506.510.06849-0.8.10-70.150.03286.416.306.406.370.06701-0.1.10-60.300.06575.755.745.765.750.06049-0.4.10-60.600.13115.034.994.995.000.05260-0.4.10-60.900.19674.714.744.714.720.04965-0.3.10-61.500.32784.024.054.064.040.04250-0.6.10-62.500.54643.293.233.273.260.03430-0.6.10-63.500.76502.912.892.902.900.03051-0.4.10-64.500.98352.642.552.592.590.02725-0.5.10-62、绘制-C等温线,对每个点作切线求得斜率(d/dC),从而求出3、分别绘制-C与(c/)-C等温线从图中得到斜率为.83,则饱和吸附量=1/.83=6.03310-6正丁醇分子截面积So = 1 / (N)=2.75310-19m2吸附单分子层厚度4、 结果分析:本实验是通过最大泡压法测定溶液的表面张力。通过测定一系列不同浓度的正丁醇溶液形成稳定匀速的气泡时的最大压力差,求得正丁醇溶液对应的表面张力、饱和吸附量、被吸附分子的截面积、吸附层厚度,测定结果是正吸附。这次的实验操作的步骤很简单,就是实验量比较大,数据比较容易产生误差。从得到的c/c等温线来看,得到的数据不是很理想,拟合出的直线不够精确。可能的原因有:液面没有跟毛细管底部完全相切;或没有等到气泡稳定了再读数。本实验是通过测最大气泡来测定溶液的表面张力,计算过程中巧妙地用求导的方法间接地来求出-c的切线。所用的毛细管必须干净,干燥,应保持垂直,其管口刚好与液面相切;读取压力计的压差时,应取气泡单个溢出时的最大压力差。使用的张力管及毛细管的洗涤要彻底。如果毛细管洗涤不干净,不仅影响表面张力值,而且会使气泡不能有规律地单个连续逸出。毛细管插入溶液中的深度直接影响测量结果的准确性,这是因为溶液的静压力会增加对气泡壁的压强,为了减少静压力的影响,应尽可能减少毛细管的插入和深度,使插入深度与液面刚好相切。随着浓度的增大,正丁醇越来越难以产生气泡,可能的是因为正丁醇的粘度增大,所以产生气泡能力减小。六、实验评注与拓展1、本实验成功的关键:仪器系统不能漏气;所用毛细管必须干净、干燥,应保持垂直,其管口刚好与液面相切;读取压差计的压差时,应取气泡单个逸出时的最大压力差;气泡逸出速度不能过快。2、测定表面张力有很多种方法,如前述毛细管上升法,最大气泡法,还有滴重法、吊环法等。最大气泡法虽然具有装置简单、操作容易、测定迅速等优点,但其最大缺点是测量精度不够理想,是一个动态的测定方法。不过,最大气泡法已被成功应用于一些粘度较大的液体、熔盐等体系的表面张力的测定。这是其它方法不能代替的。 七、提问与思考毛细管尖端为何必须调节得恰与液面相切?否则对实验有何影响?答:毛细管尖端若不与液面相切插入一定深度,会引起表面张力测定值偏小;如果将毛细管末端插入到溶液内部,毛细管内会有一段水柱,产生压力P,则测定管中的压力会变小,测量结果偏大。最大气泡法测定表面张力时为什么要读最大压力差?如果气泡逸出的很快,或几个气泡一齐出,对实验结果有无影响?答:如果毛细管半径很小,则形成的气泡基本上是球形的。当气泡开始形成时,表面几乎是平的,这时曲率半径最大;随着气泡的形成,曲率半径逐渐变小,直到形成半球形,这时曲率半径R和毛细管半径r相等,曲率半径达最小值,根据拉普拉斯(Laplace)公式,此时能承受的压力差为最大:pmax=p0-pr=2/。气泡进一步长大,R变大,附加压力则变小,直到气泡逸出。最大压力差可通过数字式微压差测量仪得到。如气泡逸出速度速度太快,气泡的形成与逸出速度快而不稳定;致使压力计的读数不稳定,不易观察出其最高点而起到较大的误差。本实验选用的毛细管尖的半径大小对实验测定有何影响?若毛细管不清洁会不会影响测定结果?答:毛细管太细,曲率半径小,附加压力大,液体在毛细管中上升的高度高,则系统需要的真空度高,使测量不便;毛细管太粗,R=,附加压力为零,无法测量。若毛细管内有表面活性杂质,会使测得的p偏小,计算出的表面张力值偏小;若毛细管内有非表面活性杂质,会使得测得的p偏大,计算出的表面张力值偏大。温度和压强的变化对测定结果有何影响?答:温度愈高,表面张力愈小,到达临界温度时,液体不气体丌分,表面张力趋近于零。最大泡压法测定时,系统不外界大气的压力差愈大,表面张力就越大。对

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论