已阅读5页,还剩53页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1,Lecture3,2,2.2LinearDifferentialEquationandMethodofVariationofConstant(线性微分方程与常数变易法),I.Linear(First-order)DifferentialEquations,II.MethodofVariationofConstant,III.BernoulliDE,伯努利微分方程,3,2.2LinearDifferentialEquationandMethodofVariationofConstant(线性微分方程与常数变易法),I.Linear(First-order)DifferentialEquations,II.MethodofVariationofConstant,III.BernoulliDE,伯努利微分方程,4,DefinitionC/P44;E/P45,issaidtobealinearfirst-orderdifferentialequation.,WealwayssupposethatthecoefficientfunctionsP(x)andQ(x)in(2.28)arebothcontinuousonsomeintervalI.,I.Linear(First-order)DifferentialEquations,5,(1),andwecall(2.3)ahomogeneouslinear1st-orderDE;,一阶齐次线性微分方程,(2),thenwecall(2.28)anonhomogeneouslinear1st-orderDE.,一阶非齐次线性微分方程,Meantime,wecall(2.3)tobeitscorrespondinghomogeneouslinearDE.,Forexample,Itisseparable!C/P33,6,2.2LinearDifferentialEquationandMethodofVariationofConstant,(线性微分方程与常数变易法),I.Linear(First-order)DifferentialEquations,II.MethodsofVariationofConstant,III.BernoulliDE,7,2.2LinearDifferentialEquationandMethodofVariationofConstant,(线性微分方程与常数变易法),I.Linear(First-order)DifferentialEquations,II.MethodsofVariationofConstant,III.BernoulliDE,8,1.ThesolutionofHomogeneouslinearDE(2.3),Example2.2.1,Solution,Thedesiredgeneralsolutionis,II.MethodofConstantVariation-themethodofsolvingfor(2.28),9,2.NonhomogeneousLinearDE(2.28)andMethodofVariationofConstant,非齐次线性微分方程(2.28)与常数变易法,10,Substitutingtheseinto(2.28)gives,Thusthegeneralsolutionof(2.28)is,wherecisanarbitraryconstant.,Variationofconstant,2.NonhomogeneousLinearDE(2.28)andMethodofVariationofConstant,Ifyoucanrememberit,itwillveryconvenience!,11,Example2.2.2C/P45,Solution,ItscorrespondinghomogeneouslinearDEis,anditsgeneralsolutionis,wherecisanarbitraryconstant.,(*),Findthegeneralsolutionof,Variationofconstant,12,12,Example2.2.2C/P45,Solution,ItscorrespondinghomogeneouslinearDEis,anditsgeneralsolutionis,wherecisanarbitraryconstant.,Substitutingitinto(2.32)gives,Thusthedesiredgeneralsolutionis,wherecisanarbitraryconstant.,(*),Findthegeneralsolutionof,13,Example2.2.3,Solution,Thusthedesiredparticularsolutionis,CfC/P49/1(6),14,Example2.2.4C/P46,Solution,Thusthedesiredgeneralsolutionis,i.e.,wherecisanarbitraryconstant.,15,2.2LinearDifferentialEquationandMethodofVariationofConstant,(线性微分方程与常数变易法),I.Linear(First-order)DifferentialEquations,II.MethodsofVariationofConstant,III.BernoulliDE,16,2.2LinearDifferentialEquationandMethodofVariationofConstant,(线性微分方程与常数变易法),I.Linear(First-order)DifferentialEquations,II.MethodsofVariationofConstant,III.BernoulliDE,17,III.BernoulliDEC/P47;E/P60,DefinitionC/P47;E/P60,Afirst-orderDEoftheform,iscalledaBernoulliDE,wherenisafixedconstant.,Otherwise,itisnotlinear.,伯努利微分方程,ItsOK!,18,ThisisalinearDE,19,Thusitsgeneralsolutionis,wherecisanarbitraryconstant.,Howabouty=0?,20,Example2.2.5C/P48,Solution,Thusthegeneralsolutionis,i.e.,wherecisanarbitraryconstant.,Inaddition,21,Example2.2.6C/P49/1(15),Solution,Thisisnotseparable,notahomogeneous,andnotaBernoulliEq.aboutunknownfunctionyforanyn!,22,Solution,ThisisaBernoulliEq.aboutunknownfunctionxofn=2.,Example2.2.6C/P49/1(15),23,Solution,or,Example2.2.6C/P49/1(15),24,2.3ExactDifferentialEquationsandIntegratingFactorsC/P50;E/P64,恰当方程与积分因子,I.ExactDE,II.IntegratingFactors,25,I.ExactDE,II.IntegratingFactors,2.3ExactDifferentialEquationsandIntegratingFactorsC/P50;E/P64,26,ItissometimesconvenienttorewriteEq.(*)inthefollowingsymmetricform(对称形式),andwealsocallittobeadifferentialform.,微分形式,27,DefinitionC/P51;E/P64,Considera1st-orderDEinthesymmetricform,then(2.42)issaidtobeanexactdifferentialequation.,I.ExactDE,28,Example2.3.1,ThefollowingODEareallexactequations:,29,Result(结果)C/P51,Proof:,30,30,Result(结果)C/P51,Forexample,31,QuestionC/P51,E/P64:,(1)HowcanwedeterminewhethertheODE(2.42)isexact?,(2)If(2.42)isexact,howcanwefindthefunctionu(x,y)?,32,TheoremC/PP51-53;E/P65(CriterionforExactness),恰当性准则,Furthermore,thedesiredfunctionuis,Proof:SeeE/PP65-66,33,Example2.3.2C/P53;E/P66,Solvethedifferentialequation,Solution,34,Therefore,thedesiredgeneralsolutionofthegivenDEisdefinedimplicitlybytheequation,Thus,wherecisanarbitraryconstant.,35,Remark:(MethodofDetachingTermsandRegroupC/P54),分项组合法,Wemustremember“totaldifferentials”asmanyaspossible!,ForexampleC/P54,36,Thus,DetachingTerms,Regroup,Totaldifferentialformulas,37,Example2.3.4C/P55,Solution:,Remark:,Forexample:,38,39,2.3ExactDifferentialEquationsandIntegratingFactors,I.ExactDE,II.IntegratingFactors,40,2.3ExactDifferentialEquationsandIntegratingFactors,I.ExactDE,II.IntegratingFactors,41,II.Integratingfactors,DefinitionC/P55;E/45,isexact,Why?,42,Example2.3.5,Solution,Howcanwefindit?,43,NoteC/P55:,Question:,ResultC/P56:,ButitisaPDE!,Integatingfactorisnotunique!,44,Generally,itisverydifficulttofindasolutionof(2.57)!,Buttherearesomespecialcaseswherewemayfindsomesolutionof(2.57).,Forexample,Butthisequationismeaninglessunlesstheexpression,45,ResultC/P56:,46,Example2.3.6C/P57,Solution,47,Example2.3.6C/P57,isthedesiredgeneralsolution.,cf.C/P45andE/P45,Solution,48,Similarly,Trytogiveitsintegratingfactor!,49,50,andsoonC/P61/4,5,6,7,8,9.,51,Example2.3.7C/P58,Solution,Ithasanintegratingfactor,Thusthedesiredgeneralsolutionis,or,wherecisanarbitraryconstant.,52,Example2.3.8C/P58,Solution,MethodI:,Thusthedesiredgeneralsolutionis,53,Example2.3.8(C/P58),Solution,MethodII:,anditsrighthandsidedependsonyalone,54,Thusthedesiredgeneralsolutionis,Example2.3.8(C/P58),Solution,MethodII:,55,Thisisahomoge
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年旅游服务礼仪与标准化培训实施考核试卷
- 2025年餐饮行业智能化服务与餐饮创新研究报告及未来发展趋势预测
- 2025年互联网行业明星IP孵化机制分析报告
- 2025年绿色建筑能源系统碳中和技术路径考核试卷
- 2025年互联网金融行业区块链技术应用现状研究报告及未来发展趋势预测
- 2025年下半年山东大学(威海)后勤管理处非事业编制岗位招聘1人(山东)笔试考试参考题库及答案解析
- 2026上海市部分事业单位面向残疾人专项招聘20人笔试考试备考题库及答案解析
- 2026浙江省机关单位遴选和公开选调公务员162人笔试考试参考试题及答案解析
- 2025年甘肃省临夏州临夏县招聘城镇公益性岗位人员40人笔试考试备考题库及答案解析
- 2025德宏州人民医院第三批就业见习岗招聘(71人)考试笔试参考题库附答案解析
- 工程伦理-形考任务二(权重20%)-国开(SX)-参考资料
- 2025年低空经济「安全护航」低空飞行安全保障体系构建报告
- 海康威视校招试题及答案
- 水文地质学基础试题库及参考答案
- 医院培训课件:《心肺复苏 (CPR)》
- 2025年高考新课标一卷文综历史试卷及答案
- 第42讲 电场能的性质-(原卷版)
- 【2025年】江苏省宿迁市辅警协警笔试笔试真题(含答案)
- (正式版)DB65∕T 4928-2025 《山洪灾害防治非工程措施运行维护技术规程》
- 生产工艺基础知识培训课件
- 2026国家能源集团新能源院校园招聘备考考试题库附答案解析
评论
0/150
提交评论