




已阅读5页,还剩53页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1,Lecture3,2,2.2LinearDifferentialEquationandMethodofVariationofConstant(线性微分方程与常数变易法),I.Linear(First-order)DifferentialEquations,II.MethodofVariationofConstant,III.BernoulliDE,伯努利微分方程,3,2.2LinearDifferentialEquationandMethodofVariationofConstant(线性微分方程与常数变易法),I.Linear(First-order)DifferentialEquations,II.MethodofVariationofConstant,III.BernoulliDE,伯努利微分方程,4,DefinitionC/P44;E/P45,issaidtobealinearfirst-orderdifferentialequation.,WealwayssupposethatthecoefficientfunctionsP(x)andQ(x)in(2.28)arebothcontinuousonsomeintervalI.,I.Linear(First-order)DifferentialEquations,5,(1),andwecall(2.3)ahomogeneouslinear1st-orderDE;,一阶齐次线性微分方程,(2),thenwecall(2.28)anonhomogeneouslinear1st-orderDE.,一阶非齐次线性微分方程,Meantime,wecall(2.3)tobeitscorrespondinghomogeneouslinearDE.,Forexample,Itisseparable!C/P33,6,2.2LinearDifferentialEquationandMethodofVariationofConstant,(线性微分方程与常数变易法),I.Linear(First-order)DifferentialEquations,II.MethodsofVariationofConstant,III.BernoulliDE,7,2.2LinearDifferentialEquationandMethodofVariationofConstant,(线性微分方程与常数变易法),I.Linear(First-order)DifferentialEquations,II.MethodsofVariationofConstant,III.BernoulliDE,8,1.ThesolutionofHomogeneouslinearDE(2.3),Example2.2.1,Solution,Thedesiredgeneralsolutionis,II.MethodofConstantVariation-themethodofsolvingfor(2.28),9,2.NonhomogeneousLinearDE(2.28)andMethodofVariationofConstant,非齐次线性微分方程(2.28)与常数变易法,10,Substitutingtheseinto(2.28)gives,Thusthegeneralsolutionof(2.28)is,wherecisanarbitraryconstant.,Variationofconstant,2.NonhomogeneousLinearDE(2.28)andMethodofVariationofConstant,Ifyoucanrememberit,itwillveryconvenience!,11,Example2.2.2C/P45,Solution,ItscorrespondinghomogeneouslinearDEis,anditsgeneralsolutionis,wherecisanarbitraryconstant.,(*),Findthegeneralsolutionof,Variationofconstant,12,12,Example2.2.2C/P45,Solution,ItscorrespondinghomogeneouslinearDEis,anditsgeneralsolutionis,wherecisanarbitraryconstant.,Substitutingitinto(2.32)gives,Thusthedesiredgeneralsolutionis,wherecisanarbitraryconstant.,(*),Findthegeneralsolutionof,13,Example2.2.3,Solution,Thusthedesiredparticularsolutionis,CfC/P49/1(6),14,Example2.2.4C/P46,Solution,Thusthedesiredgeneralsolutionis,i.e.,wherecisanarbitraryconstant.,15,2.2LinearDifferentialEquationandMethodofVariationofConstant,(线性微分方程与常数变易法),I.Linear(First-order)DifferentialEquations,II.MethodsofVariationofConstant,III.BernoulliDE,16,2.2LinearDifferentialEquationandMethodofVariationofConstant,(线性微分方程与常数变易法),I.Linear(First-order)DifferentialEquations,II.MethodsofVariationofConstant,III.BernoulliDE,17,III.BernoulliDEC/P47;E/P60,DefinitionC/P47;E/P60,Afirst-orderDEoftheform,iscalledaBernoulliDE,wherenisafixedconstant.,Otherwise,itisnotlinear.,伯努利微分方程,ItsOK!,18,ThisisalinearDE,19,Thusitsgeneralsolutionis,wherecisanarbitraryconstant.,Howabouty=0?,20,Example2.2.5C/P48,Solution,Thusthegeneralsolutionis,i.e.,wherecisanarbitraryconstant.,Inaddition,21,Example2.2.6C/P49/1(15),Solution,Thisisnotseparable,notahomogeneous,andnotaBernoulliEq.aboutunknownfunctionyforanyn!,22,Solution,ThisisaBernoulliEq.aboutunknownfunctionxofn=2.,Example2.2.6C/P49/1(15),23,Solution,or,Example2.2.6C/P49/1(15),24,2.3ExactDifferentialEquationsandIntegratingFactorsC/P50;E/P64,恰当方程与积分因子,I.ExactDE,II.IntegratingFactors,25,I.ExactDE,II.IntegratingFactors,2.3ExactDifferentialEquationsandIntegratingFactorsC/P50;E/P64,26,ItissometimesconvenienttorewriteEq.(*)inthefollowingsymmetricform(对称形式),andwealsocallittobeadifferentialform.,微分形式,27,DefinitionC/P51;E/P64,Considera1st-orderDEinthesymmetricform,then(2.42)issaidtobeanexactdifferentialequation.,I.ExactDE,28,Example2.3.1,ThefollowingODEareallexactequations:,29,Result(结果)C/P51,Proof:,30,30,Result(结果)C/P51,Forexample,31,QuestionC/P51,E/P64:,(1)HowcanwedeterminewhethertheODE(2.42)isexact?,(2)If(2.42)isexact,howcanwefindthefunctionu(x,y)?,32,TheoremC/PP51-53;E/P65(CriterionforExactness),恰当性准则,Furthermore,thedesiredfunctionuis,Proof:SeeE/PP65-66,33,Example2.3.2C/P53;E/P66,Solvethedifferentialequation,Solution,34,Therefore,thedesiredgeneralsolutionofthegivenDEisdefinedimplicitlybytheequation,Thus,wherecisanarbitraryconstant.,35,Remark:(MethodofDetachingTermsandRegroupC/P54),分项组合法,Wemustremember“totaldifferentials”asmanyaspossible!,ForexampleC/P54,36,Thus,DetachingTerms,Regroup,Totaldifferentialformulas,37,Example2.3.4C/P55,Solution:,Remark:,Forexample:,38,39,2.3ExactDifferentialEquationsandIntegratingFactors,I.ExactDE,II.IntegratingFactors,40,2.3ExactDifferentialEquationsandIntegratingFactors,I.ExactDE,II.IntegratingFactors,41,II.Integratingfactors,DefinitionC/P55;E/45,isexact,Why?,42,Example2.3.5,Solution,Howcanwefindit?,43,NoteC/P55:,Question:,ResultC/P56:,ButitisaPDE!,Integatingfactorisnotunique!,44,Generally,itisverydifficulttofindasolutionof(2.57)!,Buttherearesomespecialcaseswherewemayfindsomesolutionof(2.57).,Forexample,Butthisequationismeaninglessunlesstheexpression,45,ResultC/P56:,46,Example2.3.6C/P57,Solution,47,Example2.3.6C/P57,isthedesiredgeneralsolution.,cf.C/P45andE/P45,Solution,48,Similarly,Trytogiveitsintegratingfactor!,49,50,andsoonC/P61/4,5,6,7,8,9.,51,Example2.3.7C/P58,Solution,Ithasanintegratingfactor,Thusthedesiredgeneralsolutionis,or,wherecisanarbitraryconstant.,52,Example2.3.8C/P58,Solution,MethodI:,Thusthedesiredgeneralsolutionis,53,Example2.3.8(C/P58),Solution,MethodII:,anditsrighthandsidedependsonyalone,54,Thusthedesiredgeneralsolutionis,Example2.3.8(C/P58),Solution,MethodII:,55,Thisisahomoge
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 第三课 小猫报站名-链表的应用教学设计-2025-2026学年初中信息技术大连版2015七年级下册-大连版2015
- 三年级道德与法治上册 第一单元 快乐学习 3《做学习的主人》说课稿1 新人教版
- 七年级历史下册 第二单元 辽宋夏金元时期 民族关系发展和社会变化 第10课 蒙古族的兴起与元朝的建立说课稿 新人教版
- 中职教材改革课题申报书
- 微型作文课题申报评审书
- 护理课题申报书多少字比较好
- 三年级信息技术上册 第3课 鼠标陪我玩一玩 1说课稿 浙江摄影版
- 语文项目课题申报书范文
- 中学课题申报书范文
- 高中校本课题立项申报书
- 2025年中考语文备考之名著复习:《艾青诗选》题集组(答案)
- 2024年游泳初级指导员认证理论考试题库(浓缩500题)
- 新能源发电技术 电子课件 2.5 可控核聚变及其未来利用方式
- 移动互联网时代的信息安全与防护学习通超星期末考试答案章节答案2024年
- 体育与健康-《立定跳远》教学设计
- 人工智能训练师理论知识考核要素细目表一级
- GB/T 9799-2024金属及其他无机覆盖层钢铁上经过处理的锌电镀层
- 退休返聘人员劳务合同范本
- DL-T5190.1-2022电力建设施工技术规范第1部分:土建结构工程
- 第2课 中国特色社会主义的开创和发展 教案-2023-2024学年中职高教(2023)中国特色社会主义
- ASME-第九卷焊接和钎焊评定标准-资料
评论
0/150
提交评论