




已阅读5页,还剩44页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
一元微积分学,大学数学(一),第三十五讲二阶常系数线性微分方程,第七章常微分方程,本章学习要求:,了解微分方程、解、通解、初始条件和特解的概念.了解下列几种一阶微分方程:变量可分离的方程、齐次方程、一阶线性方程、伯努利(Bernoulli)方程和全微分方程.熟练掌握分离变量法和一阶线性方程的解法.会利用变量代换的方法求解齐次方程和伯努利方程.知道下列高阶方程的降阶法:,了解高阶线性微分方程阶的结构,并知道高阶常系数齐线性微分方程的解法.熟练掌握二阶常系数齐线性微分方程的解法.掌握自由项(右端)为多项式、指数函数、正弦函数、余弦函数以及它们的和或乘积的二阶常系数非齐线性微分方程的解法.,第五节二阶常系数线性微分方程,特征方程,特征根,一、二阶常系数齐次线性微分方程,形如,的方程,称为二阶常系数齐线性微分方程,,即,二阶常系数齐线性微分方程,的特征方程为,是方程(1)的两个线性无关的解,故方程(1)的通解为,二阶常系数齐线性微分方程,的特征方程为,由求根公式,由刘维尔公式求另一个解:,于是,当特征方程有重实根时,方程(1)的通解为,二阶常系数齐线性微分方程,的特征方程为,3)特征方程有一对共轭复根:,是方程(1)的两个线性无关的解,其通解为,由线性方程解的性质:,均为方程(1)的解,且它们是线性无关的:,故当特征方程有一对共轭复根,时,原方程的通解可表示为,二阶常系数齐线性微分方程,特征方程,特征根,通解形式,解,解,解,故所求特解为,解,解,取x轴如如图所示。,由力学的虎克定理,有,(恢复力与运动方向相反),由牛顿第二定律,得,记拉长后,突然放手的时刻为,我们要找的规律是下列初值问题的解:,从而,所求运动规律为,二、n阶常系数齐线性微分方程,形如,的方程,称为n阶常系数齐线性微分方程,,n阶常系数齐线性微分方程的特征方程为,解,解,在研究弹性地基梁时,遇到一个微分方程,试求此方程的通解。,三、二阶常系数非齐线性微分方程,形如,的方程,称为二阶常系数非齐线性微分方程,,它对应的齐方程为,我们只讨论函数f(x)的几种简单情形下,(2)的特解。,常系数非齐线性微分方程算子解法,方程(2)对应的齐方程(1)的特征方程及特征根为,单根,二重根,一对共轭复根,假设方程,有下列形式的特解:,则,代入方程(2),得,即,由方程(3)及多项式求导的特点可知,应有,方程(2)有下列形式的特解:,由多项式求导的特点可知,应有,方程(2)有下列形式的特解:,由多项式求导的特点可知,应有,方程(2)有下列形式的特解:,当二阶常系数非齐线性方程,它有下列形式的特解:,其中:,解,对应的齐方程的特征方程为,特征根为,对应的齐方程的通解为,将它代入原方程,得,比较两边同类项的系数,得,故原方程有一特解为,综上所述,原方程的通解为,解,对应的齐方程的特征方程为,特征根为,对应的齐方程的通解为,将它代入原方程,得,上式即,故原方程有一特解为,综上所述,原方程的通解为,解,综上所述,原方程的通解为,解,代入上述方程,得,从而,原方程有一特解为,解,代入上述方程,得,比较系数,得,从而,原方程有一特解为,故,解,由上面两个例题立即可得,解,对应的齐次方程的通解为,将它代入此方程中,得,从而,原方程有一特解为,故原方程的通解为,四、欧拉方程,形如,的方程,称为n阶欧拉方程,其中,关于变量t的常系数线性微分方程。,引入算子记号:,由数学归纳法可以证明:,解,这是三阶欧拉方程,,作代数运算后,得,即,这是一个三阶常系数线性非齐
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度沉浸式话剧体验馆建设与运营合同
- 2025年度智能制造项目实施与顾问支持服务合同
- 2025年度智能玻璃幕墙安装与维护服务合作协议
- 2025年智能交通设施建设与维护综合技术服务合同
- 2025定制化研究生课程学习及职业规划辅导合同
- 2025年小家电品牌全球市场拓展代理销售合同
- 2025年高品质医院后勤保洁服务采购合同模板
- 2025年度高端办公家具采购与供应链融资合作协议
- 2025年文化旅游资源开发与运营服务合同
- 2025年度家电产品区域代理销售合同
- 高考志愿规划创业
- 2025年度医院医德医风考评表格
- 世界给予我的 课件-2024-2025学年高二下学期开学第一课主题班会
- 智慧消防项目可行性研究报告
- 福建省福州市2024-2025学年高三上学期8月第一次质量检测试题 英语 含答案
- 仓储物流安全培训课件
- 胆囊癌围手术护理
- 安徽省皖江名校2024-2025学年高一上学期12月联考英语试题(含答案无听力原文及音频)
- 汽车维修业务接待
- 洒水降尘合同范例
- 吊装作业安全会议
评论
0/150
提交评论