




已阅读5页,还剩34页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第16讲Lebesgue积分的定义与性质,目的:了解Lebesgue积分的科学意义,熟练掌握Lebesgue积分的定义及其基本性质。重点与难点:Lebesgue积分的引入及其性质。,第16讲Lebesgue积分的定义与性质,基本内容:一Lebesgue积分的定义问题1:分析Riemann积分的缺陷,我们应如何定义可测函数的积分?,第16讲Lebesgue积分的定义与性质,到目前为此,一切准备工作就绪,我们可以来定义Lebesgue积分了。定义Lebesgue积分的方法有多种,其一是利用简单函数来定义,根据上一章,对E上任一非负可测函数f,可以找到一列单调递增的简单函数,使得,而对每个简单函数,若,第16讲Lebesgue积分的定义与性质,则可自然定义的积分为:若此和式极限存在,则可定义该极限为f的积分,最后再过渡到一般的可测函数。第二种方法是如引言所说,找一串,第16讲Lebesgue积分的定义与性质,序列,使记,讨论和式极限是否存在。还有一种办法,就是对E作任意划分:记,然后象Riemann积分那样作对应于该划分的小,第16讲Lebesgue积分的定义与性质,和数与大和数,讨论相对于划分的加细,其大和数与小和数的极限是否相等。本章将采用第二种做法。定义1设是测度有限的可测集,f是定义在E上的有界可测函数,即存在,第16讲Lebesgue积分的定义与性质,,使若D:是的任一分点组,则记对任意,作和式,第16讲Lebesgue积分的定义与性质,称S(D)为f对应分点组D的一个“和数”。如果存在常数A,使得对任意总有当任意分点组D满足时换言之,则称f在E上是Lebesgue可积的,并称A为f在E上的,第16讲Lebesgue积分的定义与性质,Lebesgue积分,记作有时为简便起见,也记,若,则记当是Riemann可积函数时,其Riemann积分仍沿用数学分析中的写法,记作,后面将会看,第16讲Lebesgue积分的定义与性质,到,当Riemann可积时,必有,由此可见Lebesgue积分确是Riemann积分的推广。对的任意分点组D:可作两个特殊的和数为:,第16讲Lebesgue积分的定义与性质,称,分别为f对应分点组D的“大和数”与“小和数”。显然对于f的任一和数,有由此可见,极限存在当且仅当,第16讲Lebesgue积分的定义与性质,都存在且相等。正如Riemann积分一样,人们可能会问,什么样的可测函数是Lebesgue可积的呢?下面的定理说明:任一有界可测函数都是Lebesgue可积的。,第16讲Lebesgue积分的定义与性质,(2)有界可测函数的积分*定理1设是测度有限的可测集,f是E上的有界可测函数,则f在E上Lebesgue可积。证明:记S是相对于所有分点组D的“小和”的上确界,是相对于所有分点组的“大,第16讲Lebesgue积分的定义与性质,和”的下确界,即。往证。首先证明,设是两个任意的分点组,则,第16讲Lebesgue积分的定义与性质,将D与D合并起来构成一个新的分点组,记为可以看成分点组D中又加进了一些分点,称为D的一个“加细”,假设对任意与之间加入了某些分点即于是,第16讲Lebesgue积分的定义与性质,第16讲Lebesgue积分的定义与性质,类似地,于是这说明,相对于任一分点组D的加细,,第16讲Lebesgue积分的定义与性质,“大和”不增,“小和”不减,且中任一数不超过中任一数,从而。再证。设D为任意的分点组,则由于故,第16讲Lebesgue积分的定义与性质,令时,则进而。最后,令,往证注意到,故,第16讲Lebesgue积分的定义与性质,由此可见所以,即f有E上Lebesgue可积。证毕。(3)例例设,第16讲Lebesgue积分的定义与性质,在0,1上Lebesgue可积,且事实上,对于任一分点组,若则,且对任意,有,而对其它的分点总有所以,第16讲Lebesgue积分的定义与性质,令立得不难看出,在0,1上不是riemann可积的。所以,Lebesgue可积函数类比Riemann可积函数类要广。,第16讲Lebesgue积分的定义与性质,二Lebesgue积分的性质问题2:回忆Riemann积分的性质,由此猜测Lebesgue积分应具有什么性质?,第16讲Lebesgue积分的定义与性质,*定理2设都是E上的有界可测函数,则(i)对任意证明:从积分定义立知(i)是显然的。,第16讲Lebesgue积分的定义与性质,(ii)若E1,Em是E的可测子集,则,第16讲Lebesgue积分的定义与性质,证明:只需就m=2情形证之,一般情形完全类似可证.设是任意正数,D:是任一分点组,使得,记,则令,第16讲Lebesgue积分的定义与性质,则分别构成E1与E2的一个划分,从而,第16讲Lebesgue积分的定义与性质,由的任意性知反之,由于,第16讲Lebesgue积分的定义与性质,且由的任意性得,第16讲Lebesgue积分的定义与性质,综上(ii)得证。证明:设,对任意,分别取中分点组D:使得令,第16讲Lebesgue积分的定义与性质,则是互不相交的有限个可测集,且,于是由(ii)知,第16讲Lebesgue积分的定义与性质,第16讲Lebesgue积分的定义与性质,所以再由的任意性得另一方面,由Lebesgue积分定义及互不相交易知,第16讲Lebesgue积分的定义与性质,故再由,第16讲Lebesgue积分的定义与性质,得仍由的任意性得,第16讲Lebesgue积分的定义与性质,所以证毕。,第16讲Lebesgue积分的定义与性质,(iv)当时,证明令,则由L
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 英美文学经典作品导读的教学设计教案
- 关于珍惜友情高一作文11篇范文
- 纪念鲁迅有感课件
- 农民互助土地流转经营合同
- 一年级作文过春节放炮8篇
- 一张难忘的照片作文500字小学作文15篇
- 唐诗的鉴赏方法:古诗语言风格教案
- 2025年全国英语等级考试(PETS)二级试卷:英语词汇与语法同步练习试题
- 合同审核流程及文件存档规范
- 早发型卵巢功能不全课件
- 2025建筑安全员考试题库
- 从2025年河南中考语文试卷中分析阅读理解如何提分
- 军工领域涉密项目保密风险评估及防控措施
- 2025发展对象考试题库附含参考答案
- 《智能建筑供配电与照明》课件(上)
- 公共打印区域管理办法
- 杭州预付消费管理办法
- 2025至2030中国电子束灭菌服务行业项目调研及市场前景预测评估报告
- 模锻工艺培训课件
- 2025年中国淋膜纸市场调查研究报告
- 【课件】破茧 逐光-2026届新高三启航主题班会:挑战极限成就梦想(含规划指南、学法指导、心理护航)
评论
0/150
提交评论