




已阅读5页,还剩80页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第三章,1函数极限的概念,播放,一、自变量趋向无穷大时函数的极限,通过上面演示实验的观察:,问题:,如何用数学语言刻划函数“无限接近”.,1、定义:,2、另两种情形:,3、几何解释:,例1,证,二、自变量趋向有限值时函数的极限,1、定义:,2、几何解释:,注意:,函数极限的统一定义,(见下表),例2,证,例3,证,例4,证,函数在点x=1处没有定义.,例5,证,3.单侧极限:,例如,左极限,右极限,左右极限存在但不相等,例6,证,左极限存在,右极限存在,不存在.,三、函数极限的性质,1.有界性,2.唯一性,2.单调有界准则,单调增加,单调减少,单调数列,几何解释:,推论,3.保不等式性,定理(保序性),定理(保号性),推论,一、极限运算法则,定理,证,由无穷小运算法则,得,推论1,常数因子可以提到极限记号外面.,推论2,有界,,4.子列收敛性(函数极限与数列极限的关系),定义,定理,证,例如,函数极限与数列极限的关系,函数极限存在的充要条件是它的任何子列的极限都存在,且相等.,海涅定理:,二、两个重要极限,(1),例3,解,(2),定义,类似地,例4,解,例5,解,求极限,二、求极限方法举例,例1,解,小结:,解,商的法则不能用,由无穷小与无穷大的关系,得,例2,解,例3,(消去零因子法),例4,解,(无穷小因子分出法),小结:,无穷小分出法:以分母中自变量的最高次幂除分子,分母,以分出无穷小,然后再求极限.,例5,解,先变形再求极限.,例6,解,例7,解,左右极限存在且相等,意义:,例8,解,三、小结,1、极限的四则运算法则及其推论;,2、极限求法;,a.多项式与分式函数代入法求极限;b.消去零因子法求极限;c.无穷小因子分出法求极限;d.利用无穷小运算性质求极限;e.利用左右极限求分段函数极限.,3、复合函数的极限运算法则,一、填空题:,练习题,二、求下列各极限:,练习题答案,一、填空题:,练习题,二、求下列各极限:,练习题答案,一、无穷小,1、定义:,极限为零的变量称为无穷小.,例如,注意,(1)无穷小是变量,不能与很小的数混淆;,(2)零是可以作为无穷小的唯一的数.,2、无穷小与函数极限的关系:,证,必要性,充分性,意义,(1)将一般极限问题转化为特殊极限问题(无穷小);,3、无穷小的运算性质:,定理2在同一过程中,有限个无穷小的代数和仍是无穷小.,证,注意无穷多个无穷小的代数和未必是无穷小.,定理3有界函数与无穷小的乘积是无穷小.,证,推论1在同一过程中,有极限的变量与无穷小的乘积是无穷小.,推论2常数与无穷小的乘积是无穷小.,推论3有限个无穷小的乘积也是无穷小.,都是无穷小,1.,注意:利用等价无穷小量时一定是乘数法中应用。,则,二、无穷大,绝对值无限增大的变量称为无穷大.,特殊情形:正无穷大,负无穷大,注意,(1)无穷大是变量,不能与很大的数混淆;,(3)无穷大是一种特殊的无界变量,但是无界变量未必是无穷大.,不是无穷大,无界,,证,三、无穷小与无穷大的关系,定理4在同一过程中,无穷大的倒数为无穷小;恒不为零的无穷小的倒数为无穷大.,证,意义关于无穷大的讨论,都可归结为关于无穷小的讨论.,曲线的渐近线,定义:若曲线C上的动点P沿着曲线无限地远离原点时,点P与某定直线L的距离趋近于0,则称直线L为曲线C的渐近线。,注意渐近线是分为斜渐近线、水平和垂直渐近线,四、小结,1、主要内容:,两个定义;四个定理;三个推论.,2、几点注意:,无穷小与无穷大是相对于过程而言的.,(1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- GB/T 14257-2025商品条码条码符号放置要求
- 2025年测量员技能面试复习题中级
- 2025年初级财务会计实操模拟题及解析
- 2025年应急物资调配笔试预测题
- 2025年篮球教练员技术水平考核试题及答案解析
- 2025年金属材料工程师专业能力测评试卷及答案解析
- 机电转业相关知识培训课程课件
- 2025年建筑装饰工程师执业资格认证试题及答案解析
- 2025年建筑电器安全检测师资格考试试题及答案解析
- 课件中插入华容道小程序
- 部编版四年级上册道德与法治《我们班四岁了》说课教学复习课件
- 小学道德与法治知识讲座
- 设备采购 投标方案(技术方案)
- 数字经济与人工智能
- 晚期胃癌患者护理查房
- IATF16949质量相关知识专项考试试题及答案
- 妇产科腹腔镜手术相关护理综述课件
- 航空发电机市场需求分析报告
- 教科版(2017版)科学五年上册《机械摆钟》说课稿(附反思、板书)课件
- 公差配合课件
- 招标代理机构入围服务 投标方案(技术标)
评论
0/150
提交评论