文档简介
CORRESPONDINGAUTHORTEL3031498143FAX3031498180EMAILADDRESSGEORGIADCPERICERTHGRMCGEORGIADISCOMPUTERSRECEIVEDINREVISEDFORM1SEPTEMBER2000ACCEPTED1OCTOBER2000ABSTRACTTHISPAPERPRESENTSANEWMATHEMATICALPROGRAMMINGFORMULATIONFORTHEPROBLEMOFDETERMININGTHEOPTIMALMANNERINWHICHSEVERALPRODUCTROLLSOFGIVENSIZESARETOBECUTOUTOFRAWROLLSOFONEORMORESTANDARDTYPESTHEOBJECTIVEISTOPERFORMTHISTASKSOASTOMAXIMIZETHEPRO“TTAKINGACCOUNTOFTHEREVENUEFROMTHESALES,THECOSTSOFTHEORIGINALROLLS,THECOSTSOFCHANGINGTHECUTTINGPATTERNANDTHECOSTSOFDISPOSALOFTHETRIMAMIXEDINTEGERLINEARPROGRAMMINGMILPMODELISPROPOSEDWHICHISSOLVEDTOGLOBALOPTIMALITYUSINGSTANDARDTECHNIQUESANUMBEROFEXAMPLEPROBLEMS,INCLUDINGANINDUSTRIALCASESTUDY,AREPRESENTEDTOILLUSTRATETHEECIENCYANDAPPLICABILITYOFTHEPROPOSEDMODELSCOPEANDPURPOSEONEDIMENSIONALCUTTINGSTOCKTRIMLOSSPROBLEMSARISEWHENPRODUCTIONITEMSMUSTBEPHYSICALLYDIVIDEDINTOPIECESWITHADIVERSITYOFSIZESINONEDIMENSIONEGWHENSLITTINGMASTERROLLSOFPAPERINTONARROWERWIDTHROLLSSUCHPROBLEMSOCCURWHENTHEREARENOECONOMIESOFSCALEASSOCIATEDWITHTHEPRODUCTIONOFTHELARGERRAWMASTERROLLSINGENERAL,THEOBJECTIVESINSOLVINGSUCHPROBLEMSARETO5P69MINIMIZETRIMLOSSP69AVOIDPRODUCTIONOVERRUNSAND/ORP69AVOIDUNNECESSARYSLITTERSETUPSTHEABOVEPROBLEMISPARTICULARLYIMPORTANTINTHEPAPERCONVERTINGINDUSTRYWHENASETOFPAPERROLLSNEEDTOBECUTFROMRAWPAPERROLLSSINCETHEWIDTHOFAPRODUCTISFULLYINDEPENDENTOFTHEWIDTHOFTHERAWPAPERAHIGHLYCOMBINATORIALPROBLEMARISESINGENERAL,THECUTTINGPROCESSALWAYSPRODUCESINEVITABLETRIMLOSSWHICHHASTOBEBURNEDORPROCESSEDINSOMEWASTETREATMENTPLANTTRIMLOSSPROBLEMSINTHEPAPERINDUSTRYHAVE,INRECENTYEARS,MAINLYBEENSOLVEDUSINGHEURISTICRULESTHEPRACTICALPROBLEMFORMULATIONHAS,THEREFORE,INMOSTCASESBEENRESTRICTEDBYTHEFACTTHATTHESOLUTIONMETHODSOUGHTTOBEABLETOHANDLETHEENTIREPROBLEMCONSEQUENTLY,ONLYASUBOPTIMALSOLUTIONTOTHEORIGINALPROBLEMHASBEENOBTAINEDAND03050548/02/SEEFRONTMATTERP72002ELSEVIERSCIENCELTDALLRIGHTSRESERVEDPIIS0305054800001027VERYOFTENTHISRATHERSIGNI“CANTECONOMICPROBLEMHASBEENLEFTTOAMANUALSTAGETHISWORKPRESENTSANOVELALGORITHMFORECIENTLYDETERMININGOPTIMALCUTTINGPATTERNSINTHEPAPERCONVERTINGPROCESSAMIXEDINTEGERLINEARPROGRAMMINGMODELISPROPOSEDWHICHISSOLVEDTOGLOBALOPTIMALITYUSINGAVAILABLECOMPUTERTOOLSANUMBEROFEXAMPLEPROBLEMSINCLUDINGANINDUSTRIALCASESTUDYAREPRESENTEDTOILLUSTRATETHEAPPLICABILITYOFTHEPROPOSEDALGORITHMP72002ELSEVIERSCIENCELTDALLRIGHTSRESERVEDKEYWORDSINTEGERPROGRAMMINGOPTIMIZATIONTRIMLOSSPROBLEMSPAPERCONVERTINGINDUSTRY1INTRODUCTIONANIMPORTANTPROBLEMWHICHISFREQUENTLYENCOUNTEREDININDUSTRIESSUCHASPAPERISRELATEDWITHTHEMOSTECONOMICMANNERINWHICHSEVERALPRODUCTROLLOFGIVENSIZESARETOBEPRODUCEDBYCUTTINGONEORMOREWIDERRAWROLLSAVAILABLEINONEORMORESTANDARDWIDTHSTHESOLUTIONOFTHISPROBLEMINVOLVESSEVERALINTERACTINGDECISIONSP69THENUMBEROFPRODUCTROLLSOFEACHSIZETOBEPRODUCEDTHISMAYBEALLOWEDTOVARYBETWEENGIVENLOWERANDUPPERBOUNDSTHEFORMERNORMALLYREECTTHE“RMORDERSTHATARECURRENTLYOUTSTANDING,WHILETHELATTERCORRESPONDTOTHEMAXIMUMCAPACITYOFTHEMARKETHOWEVER,CERTAINDISCOUNTSMAYHAVETOBEOEREDTOSELLSHEETSOVERANDABOVETHEQUANTITIESFORWHICH“RMORDERSAREAVAILABLEP69THENUMBEROFRAWROLLSOFEACHSTANDARDWIDTHTOBECUTROLLSMAYBEAVAILABLEINONEORMORESTANDARDWIDTHS,EACHOFADIERENTUNITPRICEP69THECUTTINGPATTERNFOREACHRAWROLLCUTTINGTAKESPLACEONAMACHINEEMPLOYINGANUMBEROFKNIVESOPERATINGINPARALLELONAROLLOFSTANDARDWIDTHWHILETHEPOSITIONOFTHEKNIVESMAYBECHANGEDFROMONEROLLTOTHENEXT,SUCHCHANGESMAYINCURCERTAINCOSTSFURTHERMORE,THEREMAYBECERTAINTECHNOLOGICALLIMITATIONSONTHEKNIFEPOSITIONSTHATMAYBEREALIZEDBYANYGIVENCUTTINGMACHINETHEOPTIMALSOLUTIONOFTHEABOVEPROBLEMISOFTENASSOCIATEDWITHTHEMINIMIZATIONOFTHETRIMAWASTETHATISGENERALLYUNAVOIDABLESINCEROLLSOFSTANDARDWIDTHSAREUSEDHOWEVER,TRIMLOSSMINIMIZATIONDOESNOTNECESSARILYIMPLYMINIMIZATIONOFTHECOSTOFTHERAWMATERIALSROLLSBEINGUSEDESPECIALLYIFSEVERALSTANDARDROLLSIZESAREAVAILABLEAMOREDIRECTECONOMICCRITERIONISTHEMAXIMIZATIONOFTHEPRO“TOFTHEOPERATIONTAKINGACCOUNTOFP69THEREVENUEFROMPRODUCTROLLSSALES,INCLUDINGTHEEECTSOFANYBULKDISCOUNTSP69THECOSTOFTHEROLLSTHATAREACTUALLYUSEDP69THECOSTS,IFANY,OFCHANGINGTHEKNIFEPOSITIONSONTHECUTTINGMACHINEP69THECOSTOFDISPOSINGOFTRIMWASTETHEABOVECONSTITUTESAHIGHLYCOMBINATORIALPROBLEMANDITISNOTSURPRISINGTHATTRADITIONALLYITSSOLUTIONHASOFTENBEENCARRIEDOUTMANUALLYBASEDONHUMANEXPERTISETHESIMPLI“EDVERSIONOFTHISPROBLEMISSIMILARTOTHECUTTINGSTOCKPROBLEMKNOWNINTHEOPERATIONRESEARCHLITERATURE,WHEREANUMBEROFORDEREDPIECESNEEDTOBECUTOBIGGERSTOREDPIECESINTHEMOSTECONOMICFASHIONINTHE1960SANDTHE1970S,SEVERALSCIENTI“CARTICLESWEREPUBLISHEDONTHEPROBLEMOF1042GSCHILLING,MCGEORGIADIS/COMPUTERSTHATRAWROLLSOFTHETYPETTHATPERMITSTHESMALLESTMINIMUM1044GSCHILLING,MCGEORGIADIS/COMPUTERSANDTHATEACHRAWROLLWILLBEUSEDTOPRODUCEPRODUCTROLLSOFASINGLETYPEONLYOVERALL,THISLEADSTOTHEFOLLOWINGUPPERBOUNDONTHENUMBEROFRAWROLLSTHATMAYBEREQUIREDJP13P0P24“P39P9P71P14P16NP13P0P24P71P87MINP82BP13P9P14P82/BP71P881WECANALSOCALCULATEALOWERBOUNDJP13P9P14ONTHEMINIMUMNUMBEROFRAWROLLSTHATARENECESSARYTOSATISFYTHEMINIMUMDEMANDFORTHEEXISTINGORDERSWEDOTHISBYASSUMINGTHATROLLSOFTHETYPETALLOWINGTHEMAXIMUMPOSSIBLEENGAGEMENTBP13P0P24P82AREUSED,ANDTHATNOTRIMISPRODUCEDHOWEVER,WEMUSTALSOTAKEACCOUNTOFPOSSIBLELIMITATIONSONTHENUMBEROFAVAILABLEKNIVESOVERALL,THISLEADSTOTHEFOLLOWINGLOWERBOUNDONTHENUMBEROFROLLSTHATMAYBEREQUIREDJP13P9P14“MAXP7P9P39P71P14P16NP13P9P14P71BP71MAXP82BP13P0P24P82,P9P39P71P14P16NP13P9P14P71MAXP82NP13P0P24P82P823MATHEMATICALFORMULATIONTHEAIMOFTHEMATHEMATICALFORMULATIONISTODETERMINETHETYPETOFEACHRAWROLLJTOBECUTANDTHENUMBEROFPRODUCTROLLSOFEACHTYPEITOBEPRODUCEDFROMIT31KEYVARIABLESTHEFOLLOWINGINTEGERVARIABLESAREINTRODUCEDNP71P72NUMBEROFPRODUCTROLLSOFTYPEITOBECUTOUTOFRAWROLLJAFII9773P71NUMBEROFPRODUCTROLLSOFTYPEIPRODUCEDOVERANDABOVETHEMINIMUMNUMBERORDEREDWENOTETHATNP71P72CANNOTEXCEEDP69THEMAXIMUMNUMBERNP13P0P24P71OFPRODUCTROLLSOFTYPEITHATCANBESOLDP69THEMAXIMUMNUMBEROFPRODUCTROLLSOFWIDTHBP71THATCANBEACCOMMODATEDWITHINAMAXIMUMENGAGEMENTBP13P0P24P82FORARAWROLLOFTYPETP69THEMAXIMUMNUMBERNP13P0P24P82OFKNIVESTHATCANBEAPPLIEDTOARAWROLLOFTYPETTHISLEADSTOTHEFOLLOWINGBOUNDSFORNP71P720NP71P72MINP1NP13P0P24P71,MAXP16P87P82P87P50BP13P0P24P82BP71,MAXP16P87P82P87P50NP13P0P24P82P2I“1,2,I,J“1,2,JP13P0P243ALSO0AFII9773P71NP13P0P24P71NP13P9P14P71,I“1,2,I4GSCHILLING,MCGEORGIADIS/COMPUTERSTHISSIMPLYIMPLIESTHATITISNOTNECESSARYTOCUTROLLJFURTHERMORE,THELIMITEDAVAILABILITYOFRAWROLLSOFAGIVENTYPETMAYBEEXPRESSEDINTERMSOFTHECONSTRAINTP40P13P0P24P9P72P14P16YP82P72JHP82,T“1,2,633CUTTINGCONSTRAINTSWENEEDTOENSURETHAT,IFAROLLJISTOBECUT,THENTHELIMITATIONSONTHEMINIMUMANDMAXIMUMENGAGEMENTAREOBSERVEDTHISISACHIEVEDVIATHECONSTRAINTSP50P9P82P14P16BP13P9P14P82YP82P72P39P9P71P14P16BP71NP71P72P50P9P82P14P16BP13P0P24P82YP82P72,J“1,2,JP13P0P247WENOTETHATTHEQUANTITYP9P39P71P14P16BP71NP71P72REPRESENTSTHETOTALWIDTHOFALLPRODUCTROLLSTOBECUTOUTOFRAWROLLJIFYP82P72“1FORSOMEROLLTYPET,THENCONSTRAINT7ENSURESTHATBP13P9P14P82P39P9P71P14P16BP71NP71P72BP13P0P24P821046GSCHILLING,MCGEORGIADIS/COMPUTERSONCEAGAIN,ATMOSTONEOFTHETERMSINTHISSUMMATIONCANBENONZEROCFCONSTRAINTS5AAND5BTHELATTERQUANTITYISGIVENBYP9P39P71P14P16BP71NP71P72OVERALL,TRIMDISPOSALRESULTSINTHEFOLLOWINGCOSTTERMCP3P9P19P16P40P13P0P24P9P72P14P16P1P50P9P82P14P16BP18P15P12P12P82YP82P72P39P9P71P14P16BP71NP71P72P2THEABOVETERMSCANNOWBECOLLECTEDINTHEFOLLOWINGOBJECTIVEFUNCTIONMAXP3P39P9P71P14P16PP71NP13P9P14P71AFII9773P71PP71CP3P9P19P2P71P40P13P0P24P9P72P14P16P9P82P14P16CP18P15P12P12P82YP82P72CP2P8P0P14P6P4P40P13P0P24P9P72P14P17ZP72CP3P9P19P16P40P13P0P24P9P72P14P16P1P50P9P82P14P16BP18P15P12P12P82YP82P72P39P9P71P14P16BP71NP71P72P2P411NOTETHATTHE“RSTTERMINTHEABOVEOBJECTIVEFUNCTIONIEP9P39P71P14P16PP71NP13P9P14P71ISACTUALLYACONSTANTANDDOESNOTAECTTHEOPTIMALSOLUTIONOBTAINED37DEGENERACYREDUCTIONANDCONSTRAINTTIGHTENINGINGENERAL,THEBASICFORMULATIONPRESENTEDABOVEISHIGHLYDEGENERATEGIVENANYFEASIBLEPOINT,ONECANGENERATEMANYOTHERSSIMPLYBYFORMINGALLPOSSIBLEORDERINGOFTHEROLLSSELECTEDTOBECUTMOREOVER,PROVIDEDALLRAWROLLSOFTHESAMETYPEARECUTCONSECUTIVELY,ALLTHESEFEASIBLEPOINTSWILLCORRESPONDTOEXACTLYTHESAMEVALUEOFTHEOBJECTIVEFUNCTIONTHEABOVEPROPERTYMAYHAVEADVERSEEECTSONTHEECIENCYOFTHESEARCHPROCEDURETHEREFORE,INORDERTOREDUCETHESOLUTIONDEGENERACYWITHOUTANYLOSSOFOPTIMALITY,WEINTRODUCETHEFOLLOWINGORDERINGCONSTRAINTSP39P9P71P14P16NP71P11P72P92P16P39P9P71P14P16NP71P72,J“2,2,JP13P0P2412THISENSURESTHATTHETOTALNUMBEROFPRODUCTROLLSCUTOUTOFRAWROLLJ1ISNEVERLOWERTHANTHECORRESPONDINGNUMBERFORROLLJALLCOMPLETELYUNUSEDRAWROLLSARELEFTLASTINTHISORDERING1048GSCHILLING,MCGEORGIADIS/COMPUTERSBP13P0P24P82BP13P9P14P82,WHICHRESULTSINONELESSCONSTRAINTFOREACHROLLJ4EXAMPLEPROBLEMSINTHISSECTION,WECONSIDERFOUREXAMPLEPROBLEMSOFINCREASINGCOMPLEXITYINORDERTOINVESTIGATETHECOMPUTATIONALBEHAVIOROFOURFORMULATIONFURTHERMOREANINDUSTRIALCASESTUDYISALSOPRESENTEDINALLCASES,WEASSUMETHATTHEMAXIMUMRAWROLLENGAGEMENTBP13P0P24P82ISEQUALTOTHECORRESPONDINGROLLWIDTHBP18P15P12P12P82THEGAMS/CPLEXVS60SOLVERHASBEENUSEDFORTHESOLUTION15ANDALLCOMPUTATIONSWERECARRIEDOUTONAALPHASERVER4100ANINTEGRALITYGAPOF01WASASSUMEDFORTHESOLUTIONOFALLPROBLEMS41EXAMPLE1OUR“RSTEXAMPLEISBASEDONTHATGIVENBYHARJUNKOSKI9SOMETRANSLATIONOFTHEVARIOUSCOSTCOECIENTSWASNECESSARYTOACCOUNTFORSLIGHTDIERENCESINTHEOBJECTIVEFUNCTIONSUSEDBYTHETWOFORMULATIONSALSONOTETHATTHEOBJECTIVEUSEDBYTHOSEAUTHORSISTHEMINIMIZATIONOFCOSTASOPPOSEDTOTHEMAXIMIZATIONOFPRO“TTHEREFORE,THESIGNOFTHEIROBJECTIVEFUNCTIONISOPPOSITETOTHATOFOURSGSCHILLING,MCGEORGIADIS/COMPUTERSTHUS,WITHTHEGIVENECONOMICDATATHEOPERATIONINCURSALOSSTHEOPTIMALSOLUTIONWITHINAMARGINOFOPTIMALITYOF01ISFOUNDWITHINLESSTHAN1CPUSATNODE49OFTHEBRANCHANDBOUNDALGORITHMUSINGABREADTH“RSTSEARCHSTRATEGYITMUSTBENOTEDTHATTHEINTEGRALITYGAPOFOURFORMULATIONISCOMPARABLETOTHATFORONEOFTHEFORMULATIONSPRESENTEDBYHARJUNKOSKI9DESPITETHEFACTTHATITDOESNOTEMPLOYANYAPRIORIENUMERATIONOFTHECUTTINGPATTERNSOURFORMULATIONALSOEXAMINESASMALLNUMBEROFNODESINORDERTODETECTTHEOPTIMALPOINTTABLE31050GSCHILLING,MCGEORGIADIS/COMPUTERS9849592GILMOREPC,GOMORYREALINEARPROGRAMMINGAPPROACHTOTHECUTTINGSTOCKPROBLEMPARTIIOPERATIONSRESEARCH196311863883HINXMANAITHETRIMLOSSANDASSORTMENTPROBLEMSASURVEYEUROPEANJOURNALOFOPERATIONALRESEARCH19805818GSCHILLING,MCGEORGIADIS/COMPUTERS44175845SWEENEYPE,HAESSLERRWONEDIMENSIONALCUTTINGSTOCKDECISIONSFORROLLSWITHMULTIPLEQUALITYGRADESEUROPEANJOURNALOFOPERATIONALRESEARCH199044224316FERREIRAJS,NEVESMA,FONSECAECASTROPATWOPHASEROLLCUTTINGPROBLEMEUROPEANJOURNALOFOPERATIONALRESEARCH199044185967GRADISARM,JESENKOJ,RESINOVICGOPTIMIZATIONOFROLLCUTTINGINCLOTHINGINDUSTRYCOMPUTERS10S945538GRADISARM,KLJAJICM,RESINOVICG,JESENKOJASEQUENTIALHEURISTICPROCEDUREFORONEDIMENSIONALCUTTINGEUROPEANJOURNALOFOPERATIONALRESEARCH1999114557689HARJUNKOSKII,WESTERLUNDT,ISAKSSONJ,SKRIFVARSHDIERENTFORMULATIONSFORSOLVINGTRIMLOSSPROBLEMSINAPAPERCONVERTINGMILLWITHILPCOMPUTERSANDCHEMICALENGINEERING199620S121610HARJUNKOSKII,WESTERLUNDT,PORNRDIERENTTRANSFORMATIONSFORSOLVINGNONCONVEXTRIMLOSSPROBLEMSBYMINLPEUROPEANJOURNALOFOPERATIONALRESEARCH199810559460311WESTERLUNDT,ISAKSSONJ,HARJUNKOSKIISOLVINGATWODIMENSIONALTRIMLOSSPROBLEMWITHMILPEUROPEANJOURNALOFOPERATIONALRESEARCH19981045728112WESTERLUNDT,HARJUNKOSKII,ISAKSSONJSOLVINGAPRODUCTIONOPTIMISATIONPROBLEMINAPAPERCONVERTINGMILLWITHMILPCOMPUTERSANDCHEMICALENGINEERING1998225637013WESTERLUNDT,IS
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- BIM技术在建筑项目施工中的全过程数据跟踪方案
- 起重机械维修工QC考核试卷含答案
- 商务英语交流测试题库及答案大全
- 2025年1月药房业务学习考核试题及答案
- 通信终端设备制造工操作规范水平考核试卷含答案
- 服装制作工安全培训强化考核试卷含答案
- 山东地区b级安全员考试试题及答案
- 合成橡胶生产工安全防护竞赛考核试卷含答案
- 盆景师岗前生产安全技能考核试卷含答案
- 陶瓷挤出成型工安全强化水平考核试卷含答案
- 建筑工程委托代建合同模板
- 思政课129运动课件
- 字节跳动绩效管理制度
- 2026年海南省五指山市房地产市场现状调研报告
- 2025贵州黔西南州政协机关面向全州考聘事业单位工作人员2人考试笔试备考试题及答案解析
- GB/T 29776-2013纺织品防虫蛀性能的测定
- 三年级上数学老师家长会
- 静压桩施工方案三期
- 医院健康教育质量评价标准
- 高级财务管理(第三版)第03章-信息不对称与代理冲突
- JJF(电子) 30304-2008 示波器高压探头校准规范-(高清现行)
评论
0/150
提交评论