



全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
3.3.2极大值与极小值主备人: 学生姓名: 得分: 一、教学内容:导数(第八课时)3.3.2极大值与极小值二、教学目标:1理解极大值、极小值的概念2能够运用判别极大值、极小值的方法来求函数的极值3掌握求可导函数的极值的步骤三、课前预习1问题情境函数的导数与函数的单调性的关系是什么?设函数yf(x)在某个区间内有导数,如果在这个区间内y0,那么函数yf(x)为在这个区间内的增函数;如果在这个区间内y0,那么函数yf(x)为在这个区间内的减函数2探究活动用导数求函数单调区间的步骤是什么?(1)函数f(x)的导数 (2)令0,解不等式得x的范围就是递增区间(3)令0,解不等式得x的范围就是递减区间3、函数的单调递减区间是 4.的单调递增区间是_5、在上是减函数,则a的取值范围为_四、讲解新课1极大值:一般地,设函数f(x)在点x0附近有定义,如果对x0附近的所有的点都有f(x)f(x0),就说f(x0)是函数f(x)的一个极大值,记作y极大值f(x0),x0是极大值点2极小值:一般地,设函数f(x)在x0附近有定义,如果对x0附近的所有的点,都有f(x)f(x0)就说f(x0)是函数f(x)的一个极小值,记作y极小值f(x0),x0是极小值点3极大值与极小值统称为极值在定义中,取得极值的点称为极值点,极值点是自变量的值,极值指的是函数值,请注意以下几点:(1)极值是一个局部的概念定义,极值只是某个点的函数值与它附近点的函数值比较是最大或最小,并不意味着它在函数的整个的定义域内最大或最小(2)函数的极值不是惟一的,即一个函数在某区间上或定义域内极大值或极小值可以不止一个(3)极大值与极小值之间无确定的大小关系,即一个函数的极大值未必大于极小值,如下图所示,x1是极大值点,x4是极小值点,而(4)函数的极值点一定出现在区间的内部,区间的端点不能成为极值点,而使函数取得最大值、最小值的点可能在区间的内部,也可能在区间的端点4 判别f(x0)是极大、极小值的方法若满足,且在的两侧的导数异号,则是的极值点,是极值,并且如果在两侧满足“左正右负”,则是的极大值点,是极大值;如果在两侧满足“左负右正”,则是的极小值点,是极小值5求可导函数f(x)的极值的步骤 (1)确定函数的定义区间,求导数(2)求方程0的根(3)用函数的导数为0的点,顺次将函数的定义区间分成若干小开区间,并列成表格检查在方程根左右的值的符号,如果左正右负,那么f(x)在这个根处取得极大值;如果左负右正,那么f(x)在这个根处取得极小值;如果左右不改变符号,那么f(x)在这个根处无极值6、有关例题例1求f(x)xx2的极值例2求 的极值探索若寻找可导函数极值点,可否只由f(x)=0求得即可?如x0是否为函数的极值点?五、课堂练习1求下列函数的极值;(3).2.已知函数的极大值为13,求m的值。3.函数,在时有极值10,求f(4)六、课堂小结七、课后作业1对于函数,下列命题正确的有_个是增函数,无极值; 是减函数,无极值;的递增区间为(,0)和(2,),递减区间为(0,2); 是极大值,是极小值2若函数可导,则“有实根”是“有极值”的_条件3已知函数f(x)ax3bx2cx,其导函数的图象经过点(1,0),(2,0),如图所示,则下列说法中不正确的是_当x时函数取得极小值;f(x)有两个极值点;当x2时
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 校招入职培训课件
- 垃圾焚烧面试题及答案
- java基础类型面试题及答案
- 综合保管副班长考试试题及答案
- 骨性关节炎考试题及答案
- 针织技术考试题及答案
- 道具趣味测试题及答案
- 检察遴选面试题及答案
- 政治试题联考试题及答案
- 胡萝卜考试题及答案
- 医院综合门诊部综合管理体系建设
- 2025至2030年中国SCADA行业市场运行现状及投资规划建议报告
- 2025年宜昌市猇亭区招聘化工园区专职工作人员(6人)笔试备考试题及答案详解(夺冠)
- 2025年山西煤矿安全生产管理人员取证考试题库(含答案)
- GB/T 9869.2-2025橡胶用硫化仪测定硫化特性第2部分:圆盘振荡硫化仪
- 厂区参观流程规范
- 陕西省专业技术人员继续教育2025公需课《党的二十届三中全会精神解读与高质量发展》20学时题库及答案
- 采气工技能操作题库
- 贵州省遵义市红花岗区小升初数学试卷
- 高压氧治疗相关知识
- 外科学麻醉专题知识讲座培训课件
评论
0/150
提交评论