实验报告-时间序列_第1页
实验报告-时间序列_第2页
实验报告-时间序列_第3页
实验报告-时间序列_第4页
实验报告-时间序列_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

实验报告-平稳时间序列模型的建立08经济统计I60814030王思瑶一 实验目的从观察到的化工生产过程产量的70个数据样本出发,通过对模型的识别、模型的定价、模型的参数估计等步骤建立起适合序列的模型。以下是化工生产过程的产量数据:obsBFobsBF1473658264374532338544713936538405466441487554255841434595944571048455011714662123547441357486414404943155850521644513817805259185553551937544120745553215156492257573423505835246059542545604526576168275062382845635029256460305965393150665932716740335668573474695435507023可以明显看出序列均值显著非零,所以用样本均值作为其估计对序列进行零均值化。obsBF零均值化后的数据YobsBF零均值化后的数据Y147-4.1285736586.8714326412.871433745-6.12857323-28.1285738542.8714347119.871433936-15.12857538-13.1285740542.8714366412.871434148-3.128577553.8714342553.87143841-10.128574345-6.128579597.8714344575.871431048-3.128574550-1.12857117119.87143466210.871431235-16.128574744-7.1285713575.87143486412.871431440-11.128574943-8.1285715586.8714350520.871431644-7.128575138-13.12857178028.8714352597.8714318553.8714353553.871431937-14.128575441-10.12857207422.8714355531.871432151-0.128575649-2.1285722575.871435734-17.128572350-1.128575835-16.1285724608.8714359542.871432545-6.128576045-6.1285726575.87143616816.871432750-1.128576238-13.128572845-6.128576350-1.128572925-26.1285764608.8714330597.871436539-12.128573150-1.1285766597.87143327119.871436740-11.1285733564.8714368575.87143347422.8714369542.871433550-1.128577023-28.12857二实验步骤1.模型识别零均值平稳序列的自相关函数与偏相关函数的统计特性如下:模型 AR(n) MA(m) ARMA(n,m)自相关函数 拖尾 截尾 拖尾偏自相关函数 截尾 拖尾 拖尾所以,作零均值化后数据的自相关函数与偏自相关函数图Date: 04/25/11 Time: 22:35Sample: 2001 2070Included observations: 70AutocorrelationPartial CorrelationACPACQ-StatProb*| . |*| . |1-0.382-0.38210.6380.001. |* |. |* |20.3250.20918.4440.000*| . |. | . |3-0.193-0.01821.2340.000. |*. |. | . |40.090-0.04921.8570.000.*| . |.*| . |5-0.162-0.12623.9000.000. | . |.*| . |60.014-0.09423.9160.001. | . |. | . |70.0120.06523.9280.001.*| . |.*| . |8-0.085-0.07924.5190.002. | . |. | . |90.039-0.05124.6440.003. | . |. |*. |100.0330.08024.7360.006. |*. |. |*. |110.0900.12525.4260.008.*| . |. | . |12-0.077-0.05425.9420.011. | . |. | . |130.063-0.04526.2910.016. | . |. |*. |140.0510.13426.5240.022. | . |. |*. |15-0.0060.07926.5280.033. |*. |. |*. |160.1260.14528.0160.031.*| . |. | . |17-0.090-0.04028.7920.036. | . |.*| . |180.017-0.08428.8200.051.*| . |. | . |19-0.099-0.01729.7950.054. | . |. | . |200.006-0.03629.7980.073. | . |. | . |210.0150.05529.8200.096. | . |. | . |22-0.037-0.01529.9680.119. | . |. | . |230.013-0.05129.9850.150. | . |. | . |240.0100.01029.9970.185. | . |. | . |250.015-0.01630.0230.223. | . |. | . |260.0360.02330.1720.261. | . |. | . |27-0.016-0.03630.2020.305. | . |. | . |280.0330.03030.3350.347. | . |. | . |29-0.057-0.01530.7350.378. | . |. | . |300.051-0.00331.0640.412.*| . |. | . |31-0.070-0.05331.7060.431. | . |. | . |320.057-0.00332.1410.460由上图可知Autocorrelation与Partial Correlation序列均有收敛到零的趋势,可以认为Y的自相关函数与偏自相关函数均是拖尾的,所以初步判断该序列适合ARMA模型。2.模型定阶(1)根据Pandit-Wu建模方法,拟建ARMA(2,1)模型,在EViews命令栏中输入:LS Y AR(1) AR(2) MA(1),得到如下结果:Dependent Variable: YMethod: Least SquaresDate: 04/27/11 Time: 16:11Sample (adjusted): 2003 2070Included observations: 68 after adjustmentsConvergence achieved after 16 iterationsBackcast: 2002VariableCoefficientStd. Errort-StatisticProb.AR(1)-0.8371280.327087-2.5593430.0128AR(2)-0.0794100.190590-0.4166520.6783MA(1)0.5313600.3171141.6756090.0986R-squared0.223430Mean dependent var-0.128570Adjusted R-squared0.199535S.D. dependent var11.97136S.E. of regression10.71062Akaike info criterion7.623463Sum squared resid7456.629Schwarz criterion7.721383Log likelihood-256.1978Durbin-Watson stat1.824445Inverted AR Roots-.11-.73Inverted MA Roots-.53令a2=resid ,在Eviews命令行中输入:genr a2=resid再输入:scat a2 a2(-1)看该模型的残差与其滞后一期之间的散点图:从上图看不出有相关趋势,而且D.W值为1.824445,说明不存在相关性,因此可以初步认为ARMA(2,1)模型是适应的。(2)根据Pandit-Wu建模方法,再建ARMA(4,3)模型,在EViews命令栏中输入:LS Y AR(1) AR(2) AR(3) AR(4) MA(1) MA(2) MA(3),得到如下结果:Dependent Variable: YMethod: Least SquaresDate: 04/27/11 Time: 16:36Sample (adjusted): 2005 2070Included observations: 66 after adjustmentsConvergence achieved after 191 iterationsBackcast: 2002 2004VariableCoefficientStd. Errort-StatisticProb.AR(1)-0.5988740.145198-4.1245440.0001AR(2)0.3121000.1230012.5373790.0138AR(3)0.8709760.1186357.3416630.0000AR(4)0.1743630.1293781.3477020.1829MA(1)0.3288360.0492186.6812140.0000MA(2)-0.2887470.056156-5.1418340.0000MA(3)-0.9400540.053871-17.450060.0000R-squared0.236761Mean dependent var-0.007358Adjusted R-squared0.159143S.D. dependent var11.37949S.E. of regression10.43479Akaike info criterion7.628172Sum squared resid6424.210Schwarz criterion7.860409Log likelihood-244.7297Durbin-Watson stat1.907327Inverted AR Roots.94-.22-.66-.64i-.66+.64iInverted MA Roots.97-.65+.74i-.65-.74i由上面结果可以看出:ARMA(4,3)模型的残差平方和Sum squared resid为6424.210, ARMA(2,1)模型的残差平方和Sum squared resid为7456.629,因此ARMA(4,3)拟合效果更好;而且ARMA(4,3)模型的D.W值为1.907327,大于ARMA(2,1)模型的D.W值1.824445,说明ARMA(4,3)模型的拟合效果更好;RMA(4,3)模型AIC值为7.628172,比ARMA(2,1)模型的7.623463稍大,但并不明显。因此模型ARMA(4,3)比模型ARMA(2,1)更好。(3)根据Pandit-Wu建模方法,再建模型ARMA(6,5),在EViews命令栏中输入:LS Y AR(1) AR(2) AR(3) AR(4) AR(5) AR(6) MA(1) MA(2) MA(3) MA(4) MA(5) ,得到如下结果:Dependent Variable: YMethod: Least SquaresDate: 04/27/11 Time: 16:46Sample (adjusted): 2007 2070Included observations: 64 after adjustmentsConvergence achieved after 124 iterationsBackcast: OFF (Roots of MA process too large)VariableCoefficientStd. Errort-StatisticProb.AR(1)0.1548380.2155130.7184610.4756AR(2)0.0190600.2076730.0917810.9272AR(3)0.1427820.1214871.1752860.2451AR(4)0.2354670.1697331.3872820.1712AR(5)0.6786490.2092393.2434150.0020AR(6)0.1157840.1815760.6376610.5264MA(1)-0.6109750.318997-1.9153020.0609MA(2)0.5842470.3334971.7518800.0856MA(3)-0.1050150.308324-0.3406000.7348MA(4)-0.5608250.369143-1.5192630.1346MA(5)-1.1605710.430714-2.6945260.0094R-squared0.596802Mean dependent var-0.003570Adjusted R-squared0.520727S.D. dependent var11.32423S.E. of regression7.839709Akaike info criterion7.111439Sum squared resid3257.435Schwarz criterion7.482497Log likelihood-216.5661Durbin-Watson stat2.318205Inverted AR Roots1.07.28+.89i.28-.89i-.18-.65+.51i-.65-.51iEstimated AR process is nons

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论