




已阅读5页,还剩45页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
做一做,四边形BCFD是平行四边形吗?说说你的理由!,想一想,三角形的中位线,D,E,DE是三角形ABC的,中位线,三角形的中位线,连接三角形两边中点的线段叫做三角形的中位线。,画出三角形的所有中线并说出中位线和中线的区别.,D,E,F,观察猜想,在ABC中,中位线DE和边BC什么关系?,DE和边BC关系,数量关系:,位置关系:,DE=BC.,D,E,演示1,结论:三角形的中位线平行于第三边,并且等于它的一半.,能说出理由吗?,说一说,分析:延长ED到F,使DF=ED,连接CF易证ADECFE,得CF=AE,CF/AB又可得CF=BE,CF/BE所以四边形BCFE是平行四边形则有DE/BC,DE=EF=BC,三角形的中位线的性质,三角形的中位线平行于第三边,并且等于它的一半,练习,三角形各边的长分别为6cm、8cm和10cm,求连接各边中点所成三角形的周长.,AB=10cm,BC=8cm,AC=6cm,EF=5cm,DF=4cm,DE=3cm,12cm,A,B,C,测出MN的长,就可知A、B两点的距离,M,N,应用,在AB外选一点C,使C能直接到达A和B,,连结AC和BC,并分别找出AC和BC的中点M、N.,若MN=36m,则AB=,2MN=72m,如果,MN两点之间还有阻隔,你有什么解决办法?,例1、如图,在四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点。四边形EFGH是平行四边形吗?为什么?,动动脑,从例1中你能得到什么结论?,顺次连接四边形各边中点的线段组成一个平行四边形,顺次连接矩形各边中点的线段组成一个,菱形,演示3,为什么?,演示2,(1)顺次连结平行四边形各边中点所得的四边形是什么?,(2)顺次连结菱形各边中点所得的四边形是什么?,平行四边形,矩形,(3)顺次连结正方形各边中点所得的四边形是什么?,正方形,(4)顺次连结梯形各边中点所得的四边形是什么?,(5)顺次连结等腰梯形各边中点所得的四边形是什么?,平行四边形,菱形,顺次连接四边形各边中点所得到的四边形一定是平行四边形,但它是否特殊的平行四边形取决于什么呢?,议一议,拓展,(6)顺次连结对角线相等的四边形各边中点所得的四边形是什么?,(8)顺次连结对角线相等且垂直的四边形各边中点所得的四边形是什么?,(7)顺次连结对角线垂直的四边形各边中点所得的四边形是什么?,菱形,矩形,正方形,结论,互相垂直,矩形,相等,菱形,互相垂直且相等,正方形,既不互相垂直也不相等,平行四边形,实际上,顺次连接四边形各边中点所得到的四边形一定是平行四边形,但它是否特殊的平行四边形取决于它的对角线是否垂直或者是否相等,与是否互相平分无关.,游戏(GAME),平行四边形,矩形,菱形,正方形,1、顺次连接四边形各边中点得到的是,平行四边形,矩形,菱形,正方形,2、顺次连接矩形各边中点得到的是,平行四边形,矩形,菱形,正方形,3、顺次连接菱形各边中点得到的是,平行四边形,矩形,菱形,正方形,4、顺次连接四边形各边中点得到正方形,那么这个四边形是,平行四边形,矩形,菱形,正方形,5、顺次连接四边形各边中点得到菱形,那么这个四边形是,平行四边形,矩形,菱形,正方形,6、顺次连接对角线互相平分的四边形各边中点得到的是,平行四边形,矩形,菱形,正方形,7、顺次连接对角线互相垂直的四边形各边中点得到的是,平行四边形,矩形,菱形,正方形,8、顺次连接对角线相等的四边形各边中点得到的是,小结,真聪明!,返回,错了!请重新返回思考一下!,返回,你真聪明!,返回,请你慎重选择!返回再思考,返回,返回,错啦!仔细考虑一下,返回,很好!继续保持,返回,错了!好好思考,返回,真聪明!继续努力,返回,答错了!返回吧,返回,真聪明!,返回,答错了!,返回,真聪明!,返回,返回,错啦!仔细考虑一下,真聪明!,返回,返回,错了!好好思考,如图,在矩形ABCD中,E、F、G、H分别是边AB、BC、CD、AD的中点,试说明四边形EFGH是菱形.,解:连接AC、BD根据三角形中位线定理,可得EF=HG=AC,EH=FG=BD又在矩形ABCD中,AC=BD所以,EF=FG=HG=HE即四边形EFGH是菱形.,小结,1.三角形的中位线定义.,2.三角形的中位线定理.,3.三角形的中位线定理不仅给出了中位线与第三边的关系,而且给出了他们的数量关系,在三角形中给出一边的中点时,要转化为中位线.,4.线段的倍分要转化为相等问题来解决.,5.三
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 电厂防雨棚施工方案(3篇)
- 学校主题墙施工方案(3篇)
- 新疆化学考试题库及答案
- 北京市门头沟区2023-2024学年八年级上学期期末质量监测历史考试题目及答案
- 安徽省宣城市郎溪县2024-2025学年高一下学期第一次月考数学考试题目及答案
- 写升国旗应用题目及答案
- 小学作文题目试卷及答案
- 第一次买东西作文12篇
- 海燕象征意义与精神力量探究教案
- 我的校园故事300字9篇
- 物业设施设备管理指南
- 《陆上风电场工程设计概算编制规定及费用标准》(NB-T 31011-2019)
- 国防共同条令教育与训练
- 全景制作方案
- 北师大版数学六年级上册第一单元《圆》 大单元作业设计
- 余映潮阅读教学好课的设计读书
- 手机直播间搭建课程设计
- NB-T 11069-2023 柔性直流用全桥和半桥子模块混合换流阀技术规范
- 【眼科学基础】眼科症状学
- 深圳机场国际货站信息系统(CTIS)全流程综合联调方案v17
- 河道保洁服务投标方案
评论
0/150
提交评论