


全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1平移变换 把图形中的某一个线段或者一个角移动到一个新的位置,使图形中分散的条件紧密地结合到一起。一般有2种方法: 1.平移已知条件 2.平移所求问题,把所求问题转化,其实就是逆向证明。几何题多数都是逆向思考的。例1 在三角形ABC中,BD=CE,求证:AB+AC大于AD+AE。这是典型的平移条件问题。解:我们把三角形AEC平移到如图所示的FBD位置。这里用了BD=EC的条件 。设AB与FD交于P 这样,容易构造两个全等的三角形AEC,FBD 由于 PA+PD大于AD PF+PB大于BF 两式相加PA+PB+PD+PF大于AD+BF 又因为BF=AE,AC= FD所以AB+AC大于AD+AE例2线段AB与线段CD交于O, AB=CD=1且角BOD=60,求证:AC+BD1解:如果证明不等的话,毫无疑问,题目要扯到三角形的性质上面来。三角形的两边之和大于第三边,我们用的就是这个。 下面考虑怎么进行平移。平移的关键就是要把分散的条件集中。所以我们把AC平移到如图的BE位置,可以构造一个平行四边形(黄色部分)。 所以,AC=BE,这一步就是把AC移向一个新的位置, 这样,在三角形DBE中,DB+BE大于DE.由于平行,可以导出DCE=60,又知道CE= AB = CD =1。所以CDE是等边三角形,DE=1。这样,利用DB+BE大于DE,可证明AC+BD1,当AC平行于DB的时候,可以取等号。2.旋转变换 把平面图形绕旋转中心,旋转一个定角,使分散的条件集中在一起. 在遇到关于等腰三角形、正三角形、正方形等问题时,是经常用到的思维途径.例1如图,等腰直角三角形ABC中,AB=AC,A=90,M,N为斜边BC上两点且MAN=45,求证:BM2+CN2=MN2解:要证BM2+CN2=MN2,容易想到勾股定理.但是BM,CN,MN都不在同一个三角形上,所以,我们就设法将BM,CN,MN移到同一三角形上。考虑到ABC是等腰三角形,且是直角三角形,将ABM绕点A逆时针旋转90.使AB与AC重合.得到ACD ,则NCD为直角三角形 只需证明MN=ND即可 因为MAN=45,所以BAM+NAC=45 ,即NAD=45又因为AM=AD所以ANDAMN 所以MN=ND,在直角NDC中,有ND2=NC2+DC2,所以BM2+CN2=MN2例2O是等边三角形ABC内一点,已知AOB=115, BOC=125, 求由线段OA, OB, OC构成的三角形的内角。3.对称变换 通过作关于某一直线或一点的对称图,把图形中的图形对称到另一个位置上,使分散的条件集中在一起。 当出现以下两种情况时,经常考虑用此变换:1.出现了明显的轴对称、中心对称条件时。2.出现了明显的垂线条件时。例1ABC中,BAC=90, ACD为等边三角形,已知DBC=2DBA,求DBA。解:由对称可知,BAE全等于BAD ,DEAB, 所以BE=BD,AE=AD, ABE=ABD 因为DBC=2DBA 所以DBC=DBE 在BC上取点F,使BF=BE 又因为BAC=90,DEAB 所以DEBC ,ADE=DAC=60 所以ADE是等边三角形 DE=AD=DC 因为EF关于BD对称 所以DF=DE=DC,BF=BE=BD, 设DBA=a则DBF=2a 因为BF=BD,所以BFD=(180-2a)/2=90-a 由于DF=DC,所以DCF=90-a ACB=180-60-(90-a)=30+a 因为ABC+ACB=90,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 农业文化体验旅游创新创业项目商业计划书
- 金融合规服务创新创业项目商业计划书
- 汽车客户关系管理系统升级创新创业项目商业计划书
- 2025年共青城市市级机关公开遴选考试笔试试题(含答案)
- 消费者购物体验研究创新创业项目商业计划书
- 编程乐园探险记创新创业项目商业计划书
- 智能化烹饪菜谱创新工具创新创业项目商业计划书
- 2025年数字艺术市场创作与交易政策环境分析报告
- 2025年文化创意产品创新研发资金申请策略研究报告
- 2025年心血管疾病心血管疾病心血管疾病患者教育项目市场前景报告
- T/CATCM 026-2023中药液体废弃物循环利用指导原则
- 低空经济培训项目工程方案
- 中国冷冻榴莲行业市场前景预测及投资价值评估分析报告
- 2025至2030年中国眼科手术器械行业投资前景及策略咨询报告
- 人教九年级英语上册Unit 7《单元写作》课件
- 外贸英语专业课件
- 心血管系统疾病相关专业医疗质量控制指标(2021年版)
- 苏教版六年级上册数学教案:19分数与分数相乘及分数乘法练习
- 2025学校食堂食品安全培训
- 生产安全事故应急预案评估报告
- 人教版(2024)七年级下册英语各单元必会重点短语和句型默写版(含答案)
评论
0/150
提交评论