




已阅读5页,还剩49页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第六章木材密度和水分(TheDensityandWaterinWood),第一节木材密度(TheDensityinWood)一、木材密度的概念(concept)和种类(kind)(一)木材密度的概念(theconceptofwooddensity)木材密度(木材容积重或容重):单位体积的木材质量。木材是一种多孔性材料,其组成成分如下:主要成分细胞壁次要成分抽提物、灰分木材空隙胞壁内的微细空隙和细胞腔等粗大空隙水分水蒸气和水,对于给定的试件,主、次成分一定,但水分随周围环境而变。故木材的密度和比重应标明其体积测量时的木材含水率。木材的比重(specificgravity)木材密度与同体积4水的密度之比。(二)木材密度的种类根据木材含水率的不同,木材密度可分为:1.生材密度(g)(greendensity)生材刚伐倒的新鲜材。在实验室条件下,用水浸泡使木材达到形体不变,此时测得的体积即为生材体积。2.气干材密度(w)(air-drieddensity)气干材长期贮存于大气中自然干燥的木材,,其含水率平均约为15%。3.全干材密度(o)(oven-drieddensity)全干材(绝干材)当木材在温度1032的烘箱内干燥到重量不变为止(即理论上含水率为零时)。4.基本密度(y)(basicdensity)基本密度单位生材体积或含水最大体积时所含木材的实质重。通常:基本密度全干材密度边材密度枝梢材抽提物含量干材枝梢材密度干材密度3.木材在树干中的部位同一树种木材,因在树干上的部位不同,木材密度也有较大的差异。(1)沿树干高度的变化规律:通常在树干基部木材的密度最大,自树基向上逐渐减小,在树冠部位则略有增大。(2)沿半径方向的变化规律:针叶材:髓心最小,向外随树龄增大木材密度逐渐增大,半径方向至距树皮1/2处,密度达最大值,此后又逐渐下降。,阔叶材:1)具心材的环孔材:心材密度大,年轮宽度与密度成正相关关系,但靠近髓部及靠近树皮的部分,木材密度则较小。2)散孔材:自髓心向树皮方向木材密度逐渐增大。(二)水分对木材密度的影响1.含水率在纤维饱和点以上变化时:含水率变化仅影响木材重量,而其体积不变湿材密度与含水率呈正相关。2.含水率在纤维饱和点以下变化时:含水率变化重量和体积同时变化,但重量变化率大于体积胀缩率气干材密度随含水率的增减变化比湿材慢。,第二节木材和水分(woodandwater)木材是树木有机体的组成部分。树木生长的全部生命活动及其有机组成,都与水分有着密不可分的关系。同时,树木伐倒后,木材作为一种原材料,其所含的水分对木材加工工艺及利用都是一种潜在的不利因子。如果处理不当,便会大大降低木材乃至木制品的使用价值;再则,木材的物理性质、力学性质又极大地受到木材内所含水分的影响。人们早就关注和重视木材与水分关系的研究,现代木材处理技术或理论研究,均在一定程度上与水分有关。一、木材中的水分(waterinwood)研究木材与水分的关系,必须先了解木材中水分存在的状态、它的分布规律以及木材中水分的测定方法和计算。这是研究木材与水分关系的基础和起点。,(一)木材中水分存在的状态(conditionofwaterinwood)1.湿润性材料的分类根据材料与水分的关系,可分为三类:(1)胶体该类物质所含水分的数量发生变化时,其尺寸和体积也随之变化,如胶、生面团等。(2)毛细管多孔体当吸水时,水分的增减并不改变或极少改变其原有的尺寸和体积,如木炭、砖等。(3)毛细管多孔胶体能吸收有限的水分,在吸水和失水时,不丧失几何形状,但尺寸发生有限变化,如木材。2.木材中水分存在的状态(conditionofwaterinwood)根据水分与木材结合形式和存在位置,可分为化学水、自由水和吸着水三种。,(1)化学水(chemicallycombinedwater)存在于木材的化学成分中,与组成木材的化学成分呈牢固的化学结合。但数量甚微(5002000。,3.弦向与径向差异的原因:(1)木射线组织的影响对径向收缩的抑制作用。木射线长轴方向与径向相一致,因其纵向收缩小于横向收缩,从而牵制了径向收缩,使得径向收缩小于弦向收缩。(2)早、晚材收缩量差异的影响晚材的干缩与湿胀量大于早材。弦向早、晚材并联,晚材的胀缩促使早材的胀缩率加大;径向早、晚材串联,早、晚材间没有相互的牵制作用。(3)胞壁径面纹孔数量对径向收缩的影响。由于管胞和纤维的径面上的纹孔数量较弦面壁为多,致使纹孔周围微纤丝的排列方向与细胞主轴的夹角变大,因而在径向收缩时会受到比较大的限制,使得径向收缩小于弦向收缩。,(三)木材干缩性的测定1.线干缩性的测定(方法详见127页)(1)径向和弦向的全干缩率式中:max试样径向或弦向全干缩率(%);Lmax湿材径向或弦向的尺寸(mm);L0全干时径向或弦向的尺寸(mm)。(2)径向和弦向的气干干缩率式中:w试样径向或弦向气干干缩率(%);Lmax湿材径向或弦向的尺寸(mm);Lw气干时径向或弦向的尺寸(mm)。,2.体积干缩率的测定(1)试样尺寸:202020(2)测弦向、径向和顺纹方向尺寸,并计算湿材、气干材和全干材的体积。(3)全干的体积收缩率:式中:vmax试样体积干缩率(%);Vmax试样湿材体积(mm3);V0试样全干体积(mm3)。(4)气干时的体积收缩率:式中:vw试样气干时的体积干缩率(%);Vmax试样湿材体积(mm3);Vw试样气干体积(mm3)。,3.干缩系数(coefficientofshrinkage)用干缩率除以造成此干缩量的试样含水率的商值来表示。它分为径向干缩系数、弦向干缩系数和体积干缩系数。利用干缩系数可计算出由湿材或生材干燥到纤维饱和点以下任一含水率时的木材干缩值,以便留出木材的干缩余量。(四)干缩应力和干燥缺陷1.干缩应力干燥过程中,由于内、外含水率梯度不同,形成内、外干缩的不均匀性,从而导致木材产生干缩应力。干缩应力可产生开裂现象,如表面裂、内裂或蜂窝裂、端裂。(1)表面裂形成原因:木材干燥时,表层含水率先行下降到纤维饱和点以下而收缩,但表层内的木材含水率尚未降至纤维饱和点以下,并未收缩,从而限制表层不能充分收缩,使它受到拉伸力,而内层则受到压缩力,此即干燥内应力的第一阶段。如果木材表面、内层含水率梯度悬殊,必然造成内应力加大,当表层的拉伸应力超过木材在该含水率时垂直纹理的拉伸强度时,便会出现表面裂。,(2)内裂或蜂窝裂形成原因:如果木材表、内层的含水率梯度并不十分显著,尽管表层产生的拉伸应力已经超过了它的弹性极限,木材并不出现破坏,然而因其受到内层的牵制不能充分收缩而处于拉伸状态。在这种情况下,木材产生一种固着,即它不能再如正常状况随含水率变化而有胀缩。随着整体木材的含水率继续下降,内层已开始收缩,但此时反而要受到固着表层的牵制。于是原先表层所受的拉力转化为压力,而表层内的部分就会因表层的制约,由受压力转变为受拉力,此即干燥应力的第二阶段。当内部拉力超过了它的横纹抗拉强度时,木材就会产生内部开裂内裂或蜂窝裂。(3)端裂形成原因:木材端部水分蒸发的速度远较侧面快。当端部表面含水率迅速降至纤维饱和点以下,其内的水分含量却仍然保持较高时,这种含水率梯度在端部表面所产生的干燥拉应力超过木材的横纹强度时,就会出现端面开裂端裂。,2.翘曲变形翘曲变形有横向和纵向两种。(1)横向翘曲变形:形成的原因是在同一板材上径、弦向差异干缩引起的,表现为板材横断面形状的改变,改变的情况因与年轮之间的夹角大小而异。凸形翘曲变形:含有髓心的径切板,两断弦向收缩的程度大于中央,使两材面呈凸形。正常材:不含髓心的径切板,其宽度方向为径向收缩,厚度方向为弦向收缩,由于宽度远大于厚度,不会出现翘曲和变形。瓦状翘曲变形:宽板面与年轮呈45夹角的板材,干缩后产生不规则的瓦状翘曲。长方形翘曲变形:正方形端面的方材,其年轮与方材两个边部平行者,收缩后变为长方形。菱形翘曲变形:原端面为正方形,但与年轮成对角线者,收缩后成菱形。,椭圆形翘曲变形:圆形断面,收缩后呈椭圆形。弦切板的瓦状翘曲变形:弦切板由于板材上下表面弦向程度不同,干缩后呈瓦状翘曲。(2)纵向翘曲变形:是锯材面或材边形状发生改变。原因:同一锯材上含干缩不一致的两部分木材(如正常材和应力木)所致。锯材纹理有较大倾斜,前者可形成顺弯或边弯,后者则使材面不再平整而向四边扭曲扭弯。不合理的锯材堆放也可造成纵向翘曲变形。,四、木材中水分的移动(一)水分在木材内移动的通道1.相互连通的细胞腔(阔叶材的导管,如无浸填体和树脂,则水和水蒸气可自由通过);2.细胞间隙(针、阔叶材均有,特别是射线组织内较多,对水分径向移动起很大作用);3.纹孔膜上的小孔;4.细胞壁上的微毛细管。(二)木材内水分移动的机理1.木材中水分移动的原因毛细管作用;液体或蒸汽不同压力的结果;不均衡的水层或气体厚度的影响。因此,在木材中产生水位梯度,水位高的向水位低的移动。后二者对于木材干燥具有极为重要的意义。,2.木材中水分的移动(1)含水率低于纤维饱和点时水蒸汽的扩散移动靠扩散移动而进行的水蒸汽移动。当木材含水率低于纤维饱和点时,木材内不含自由水,胞腔内充满了空气。由于木材表面水分的蒸发,在木材内形成了含水率梯度,并呈现出相应的水蒸汽分压梯度。在这种梯度作用下,水蒸汽开始沿着细胞腔并通过纹孔及纹孔膜上的小孔,由内向外扩散。依靠毛细管张力和毛细管水的移动由于木材表面水分的蒸发,使表面部分的毛细管张力变大,水层变薄,在毛细管内形成弯液面,从而产生毛细管张力差,促使吸着水沿着细胞壁内微毛细管系统从含水率高的部位向含水率低的部位移动。蒸汽状态与液体状态的不断相互交替邻近的细胞壁内的微毛细管与细胞腔形成的大毛细管之间,呈水蒸汽或液态水相互交替式移动。,(2)含水率高于纤维饱和点时细胞腔内的自由水呈液体状态。由于各个部位细胞腔内的水蒸汽压力是一致的,故木材中没有蒸汽状态的水分移动。此时,只可能有依靠毛细管张力差所引起的液态水自由水沿着细胞腔与纹孔的移动。当木材中有一部分已干燥到纤维饱和点以下时,刚开始时木材表层细胞向外蒸发水分,使胞腔内水膜厚度逐渐变小,使得毛细管内新月形液面的弯曲度急剧地增大,蒸发面与木材内部形成了毛细管张力差,促使自由水由内部细胞移向蒸发面,使蒸发面逐渐移向木材内部,通过上述三种水分传导方式,木材得以干燥。,五、木材的吸水性(water-absorbingcapacityofwood)1.吸水性(water-absorbingcapacity)指木材浸于水中吸收水分的能力。吸收水分的数量与木材在水中停留的时间有关。2.吸水速度单位时间内木材吸水的数量。3.水容量或最大含水率(Wmax%)木材吸水的最大量占干材重量的百分率。最大含水率与木材密度有密切关系。密度愈大,木材可能吸收的最大含水率愈小。此外,木材的吸水性还与木材构造和内含物有关。针叶材含有树脂或阔叶材含有树胶的树种,都因此而减少其水容量。心材树种的水容量,一般心材往往因存在数量较多的浸填体或其他内含物,而使其水容量小于边材。,就吸水速度而言,密度小的树种快于密度大的树种,木材原有含水率越高,其吸水显然低于原有含水率低的状况。此外,顺纹方向的吸水速度也大于横纹方向。4.木材吸水性的测定:试样尺寸为202020mm,放入烘箱内烘干并称重,将烘干的试样放入盛有蒸馏水的容器内,用一金属网上置以重物,使试样全部压入水面以下,水的温度应保持在202范围内。浸入后6h称重,以后经1、2、4、8、12、20昼夜各称重一次,次后每隔10昼夜进行称重,至最后两次含水率之差小于5%时,即可认为木材试样已充分吸水,并可结束测定。木材吸水率:A试样的吸水率(%);m试样吸水后质量(g);m0试样全干时的质量(g)。,六、木材对液体的贯透性(thepenetrationofwoodforliquid)木材对液体的贯透性指水分或其他液体在常压下或加压条件下透入木材的能力。当木材与水分或液体接触时,其透入性包括两个方面:即吸收或贯透。吸收以单位体积木材吸收水分或液体的重量表示木材对水或液体吸收的多少。贯透以液体透入木材的深度表示。生产中常要求木材尽量减少吸收量而有较大的贯透深度以节约药剂使用量。影响水分或液体透入深度的因素:(一)压力大小与加压时间压力越大,则液体透入深度就越深,所需时间就越短。当木材在具有一定温度的液体浸渍时,往往会使得木材组织软化,过高的压力就会降低木材的强度,影响制品的质量。理想的方法是在压力不大的情况下,增加加压时间,达到使处理剂透入至要求的深度,且不降低木材的强度。,(二)液体温度提高液体温度会改善其流动性,使其易于透入木材,但不能过大地提高液体温度,否则会严重地降低木材强度。(三)液体性质盐类水溶液较油剂易于透入木材。同时,液剂粘度小比粘度大(如煤焦油等)要易于透入木材。(四)树种不同树种木材间由于构造上有差别,贯透性也有所不同。有的树种木材既有较大的管孔,又无浸填体堵塞,液体容易透入,如红栎类木材和榆木等。而白栎类木材和栗木等常具丰富的浸填体,对液体的贯透性就差些。(五)心材和边材一般说来,心材中具有较多的沉积物,它对液体的贯透性就小于边材。(六)木纹方向液体透入木材的深度,纵向大于横向。(七)木材的含水状况湿材的液体贯透性要小于干材,故要求贯透处理木材时,其含水率应在25%以下。,7木材的热电学性质(TheThermalandElectricalPropertiesofWood),即木材的热物理性质,它是由比热导热系数、导温系数等热物理参数来综合表征的,这些参数,在木材加工的热处理(如原木的解冻、木段的蒸煮、木材干燥预处理等)中,是重要的工艺参数,在建筑部门进行保温设计时,是不可缺少的数据指标。7-1木材的热学性质(TheThermalPropertiesofWood)一、木材的比热和热容量1比热(specificheat)比热是提高某物质的温度1所需的热量与提高同质量的水温度1所需要热量之比。,7-1木材的热学性质(TheThermalPropertiesofWood)一、木材的比热和热容量,1比热(specificheat)(1)绝干材的比热(随温度升高而增大)早在1913年,邓洛普(F.Dunlop)增测定过不同树种的100块试样在106-0之间的比热,发现比热与树种、密度、树木的位置无关。木材的平均比热为0.3270.005。但比热受温度的影响。C=0.266+0.00116t(千卡/kg)(0-106)(2)湿木材的比热:随含水率的增加而增大,由于木材是多孔性有机材料,其比热远大于金属材料,但明显小于水。水的比热木材的比热:Cw=(WCw+100C干)/(100+W)(千卡/千克)Cw=0.28W(1+t/100)0.2(千卡/千克)适用于含水率10%-150%,温度20-100。,7-1木材的热学性质一、木材的比热和热容易,2热容量(thermalcapacity):Q/tt=(t1-t0)某物质的温度变化1所吸收或放出的热量:含水木材的热容量:Qw/t=Q干/t+Q水/t热量:Qw=Q干+Q水=mC干(t1-t0)+mC水*W/100(t1-t0)式中:m干材重量W炉干材重m为基准的木材含水率。,二、木材的导热系数(热导率)(thermalconductivitycoefficientofwood),稳态热传导(steady-stateheatconduct):加热面与冷却面间的木材保持一恒定的温度梯度(temperaturegradient)。木材的导热性能用稳态热导率(steady-statethermalconductivity)来表示。导热系数(thermalconductivitycoefficient):在单位时间内,通过物体单位厚度、单位面积两面温度差为1时所需要的热量,它是表征物体以热传导方式传递热量的能力,所以又称热传导率。=Q*X/A*T*t(kcal/mh)式中:为导热系数;Q为传导热量;x为试样厚度;A为面积;T为温差;t为时间;q为热流强度(千卡/m2h)。由于木材仅含有极少量易于传递能量的自由电子,并且是具有很多空气孔隙的多孔性材料,所以很小,属于热的不良导体,这正是木材常在建筑中用作保温,隔热材料以及在民用品中用于炊具把柄材的主要原因之一。,二、木材的导热系数(thermalconductivitycoefficientofwood),木材导热系数的影响因素:1D因实空2W因水木(水=25空气)3纹理方向:11111大约是=1.83.5木原因:(1)分子链长度方向的热平衡阻力小;(2)细胞长轴胞壁连续导热。证实胞壁中纤维素分子的排列方向对热传导的异向性有很大影响。0以上T原因:T,木材分子运动加剧,热阻减小,从而使热导率增加。0以下T,三、木材的导温系数(热扩散率)(thermaldiffusivityofwood),它的物理意义是表征材料(如木材)在冷却或加热的非稳定状态过程中,各点温度迅速趋于一致的能力(即各点达到同一温度的速度)。a越大,则各点达到同一温度的速度就越快。导温系数(thermaldiffusivity)与材料的导热系数(thermalconductivitycoefficient)成正比,与材料的体积热容易成反比:即:a=/c(m2/s)式中:为导热系数w/(mk);c为比热KJ/(kgk);为密度(kg/m3);c为体积热容量KJ/(m3k)。各树种木材弦向导热温度系数为11.7617.5410-8m2/s,平均为13.910-8m2/s。导温系数的影响因素:(1)密度Da(D,孔隙低)(2)含水率Wa(a水a横a径向顺,7-2木材的电学性质(TheElectricalPropertiesofWood),电的运动现象即电荷的移动现象为电流。直流电只往一个方向流动的电流。分流电是流动方向周期性地变换电流。泛指木材在直流电场和交变电场作用下所呈现的材料特性。导电机理、直流电性质、高频介电性质。一、木材的导电机理木材的导电性很低,绝干的木材可以认为绝缘体木材的绝缘等距离以决于其含水率。1电阻率和电导率电阻率(electricalresistivity)(,an):说明材料电阻性质(导电性能的优劣)的物理参数,电阻率越大,则导电能力越弱。电导率(electroconductibility)=1/说明材料的导电能力越强。,一、木材的导电机理,2木材的导电机理:是由离子进行的,主要在细胞壁的无定形区域内发生的。离子导电:一是被吸附在结晶区表面离子基上的结合离子;二是自由离子,是木材的无机成份中含有的杂质产生的离子。影响电导率的主要因子:一是木材中导电离子的数目或浓度),即载流子的数目;自由离子与之成正比;二是在吸湿范围内,离子的迁移率,即载流子在电场作用下的流动能力(迁移速率)。在低含水率下,自由郭子数目起主要作用;在高含水率下,离子迁移率起主要作用。,二、木材的直流电性质(direct-currentpropertiesofwood),木材的直流电性质(direct-currentpropertiesofwood),是指木材受直流电源作用所呈现的一些特性,主要体现各种因子(含水率、温度、纹理方向等)对木材电阻率的影响,以及木材导电性随时间的变化等。1含水率对木材直流电阻率的影响W(在纤维饱和点以上时)2温度的影响:T在0以上范围内,温度对全干材影响最为显著;从全干至纤维饱和点,随W,温度影响变小。3密度:D稍有下降,影响不显著通常D大者,小,大。因D大者,木材实质多,空隙小,而木材细胞壁实质的电阻率远较空气要小。4纹理方向(由于结构差异而产生的)轴向横向针叶树材2.3-4.5倍;心材边材阔叶树材2.5-8.0倍因为受到水溶性电解质的存在的影响,心材水溶性电解质含量高,所以心材边材。,三、木材的高频介电性质(highfrequencydielectricproperties),交流电(alternating-current):大致可分频10-20KHz以上高频,以下低频。木材的交流电性质(alternating-currentpropertiesofwood):是泛指木材在各种频率的交流电场作用下所呈现的各种特性,在交流电低频区域,木材交流电性质与直流电性质呈现同样特性。介电性质(dielectricproperties):介电系数,损耗角正切,介质损耗因数等,在木材工业中常利用高频交变电场进行木材的干燥、胶合、曲木等,此外也用于木材含水率的测定。木材的介电性质指介电常数和介电损耗等。1木材介电常数(dielectricconstant)=Cw/Co=Qw/Qo指木材介质电容器的电容量与同体积尺寸,同几何形状的真空电容器的电容量之比值。Qw木材时的电量;Co在真空介质条件下的电容量Cw置入木材介质之后的电容量;Qo真空时的电量最好的电气绝缘体具有最小的介电常数。,三、木材的高频介电性质,2介电常数的影响因子含水率(在一定温度和频率时)木材极化强度增高密度胞壁
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- GB/T 28857-2025差动变压器式位移传感器
- 2025年宁夏安全员A考试核心难点题及答案
- 2025年新媒体运营师专业技能考核模拟题及答案
- 2025年电子商务运营经理面试技巧与模拟题
- 草坪园艺技术使用中常见问题解析
- 2025年全国会计从业资格考试试题及答案解析
- 2025年汽车维修技师技能培训考试试题及答案解析
- 2025年大学生安全教育考试题库及答案解析
- 2025年平面设计师职业技能认证考试试题及答案解析
- 2025年篮球教练师资格考试试题及答案解析
- 2025年科研项目经理专业知识考试题目答案解析
- 2025广东肇庆市怀集县卫生事业单位招聘102人笔试模拟试题及答案解析
- 青马考试题目及答案
- 2024-2025学年广东省深圳市南山区四年级(下)期末数学试卷
- 算力中心计算任务优化方案
- 劳务派遣工作知识培训课件
- AutoCAD电气工程制图 课件 项目1 低压配电柜的绘制与识图
- 无人机反制设备原理课件
- 北京市2025年普通高中学业水平等级性考试政治试题(解析版)
- 2025年村干部考试试题(含答案)
- 新华书店招聘面试题库全攻略:行业知识、技能与面试技巧
评论
0/150
提交评论