




已阅读5页,还剩40页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河北工程大学毕业设计目录摘要1第1章 绪论21.1 啤酒生产工艺21.2 废水、废物来源31.3 啤酒废水的特征及水质水量4第2章 毕业设计任务书4第3章 方案选择63.1 啤酒废水的处理方法63.2 本设计工艺的选择及其流程10第4章 各构筑物计算124.1 格栅124.2 调节池154.3 过滤机154.4 UASB反应池设计计算154.5 CAST池设计计算264.6 污泥浓缩池设计计算294.7 贮泥池设计计算324.8 污泥脱水34第5章 污水处理站布置345.1 污水处理厂平面图布置345.2 污水处理厂高程布置375.3 污水泵站工艺设计41结束语42参考文献43摘要随着人民生活水平的不断提高,我国的啤酒工业发展迅速,啤酒产量有了较大幅度的增长,已成为世界五大啤酒生产国之一。至目前为止全国啤酒年产量超过2500万吨,居世界首位。啤酒工业在我国迅猛发展的同时,排出了大量的啤酒废水,给环境造成了极大的威胁。本设计为某啤酒废水处理设计。设计程度为初步设计。啤酒废水水质的主要特点是含有大量的有机物,属高浓度有机废水,故其生化需氧量也较大。该啤酒废水处理厂的处理水量为5000,不考虑远期发展。原污水中各项指标为:BOD浓度为4500-5500 mg/L ,COD浓度为8500-11000 mg/L ,SS浓度为800-450mg/L 。因该废水BOD值大,不经处理会对环境造成巨大污染,故要求处理后的排放水要达到一定的排放标准,即:BOD 100 mg/L ,COD 150 mg/L ,SS 160mg/L 。本文分析了啤酒生产中废水产生的环节,污染物及主要污染来源,并从好氧、厌氧生物处理两方面来考虑了废水治理工艺,提出了UASB+CAST的组合工艺流程。可将废水COD由8500-11000 mg/L降至100-150 mg/L ,BOD从4500-5500mg/L降至50-100 mg/L以下,SS由800-450 mg/L降到160 mg/L以下,出水符合标准。本设计工艺流程为:啤酒废水 粗细格栅 污水提升泵房 调节池 UASB反应器 CAST池 处理水该处理工艺具有结构紧凑简洁,运行控制灵活,抗冲击负荷,污泥量小等特点,实践表明该组合工艺处理性能可靠,投资少,运行管理简单的特点。为啤酒工业废水处理提供了一条可行途径。具有良好的经济效益、环境效益和社会效益。关键词: 啤酒废水 UASB CAST第1章 绪论1.1啤酒生产工艺啤酒生产工艺分为制麦、糖化、发酵、及处理等4大工序1.麦芽制备工段麦芽制备工段习惯上称为制麦,是生产啤酒的开始,将原料大麦制成麦芽。整个制麦过程大体可分为原料清选分级、浸麦、发芽、干燥、除根等过程。制麦的目的在于使大麦发芽,产生多种水解酶类,以便通过后续糖化,使大分子淀粉和蛋白质得以分解溶出。制麦工段用水主要包括浸麦洗麦用水和冷却用水两部分。用水浸渍大麦,俗称浸麦,浸麦的目的在于使麦粒吸水和吸氧、洗涤除尘以及去除微生物,并将麦皮内的用害成分浸出,为发芽提供条件。在浸麦时,浸麦用水中常投加化学药品,如饱和澄清石灰水、甲醛水溶液、高锰酸钾、氢氧化钠或氢氧化钾溶液。整个浸渍周期长达48-72天。随着排水时间的推迟,每以浸段产生的废水中含有机污染物浓度由高到低。根据国内现行制麦工艺,每投产1t大麦约耗水18-60(1)发芽 水分、氧气和温度是麦粒发芽的必要条件。大麦经水浸渍后,含水率为4048,在制麦芽过程中需通入饱和湿空气,环境的相对湿度应在85以上。麦粒发芽因呼吸作用而耗氧,同时产生的二氧化碳有利于麦粒发芽。但通风量不能过大,否则麦芽呼吸作用太旺盛,营养物会消耗过多。发芽的温度以13-18为宜。温度过低,发芽周期要延长;温度太高,发芽生长速度快,营养物质耗费多,如果通风跟不上,容易发生霉烂现象。所以,发芽工段生产的水温度较低,单发芽工段的污水温度一般在10左右,单独处理会有低温处理的困难。(2)干燥 生产啤酒,不直接使用绿麦芽,而是使用干麦芽,这是因为,经干燥处理后,绿麦芽的生腥味被去除,使啤酒的风味得到改善;经干燥处理后,干麦芽带有的特有的色、香、味赋予啤酒特殊的风味;从储藏角度看,绿麦芽含水量高,不能久贮。麦芽的干燥过程分成烘干和焙焦两个阶段。(3)麦芽除根 麦根的吸湿性强,如不去除,易吸收水分而影响麦芽的保存。麦根含有苦涩味物质、色素和蛋白质,对啤酒的风味、色泽和稳定性都不利。因此,经干燥后的麦芽,应立即用除根机除根。(4)麦芽保存 麦芽经适当时间贮存后再用来糖化要不直接使用新鲜麦芽效果好。再贮存期间,麦芽的淀粉酶和糖化酶活力以及酸度都有提高;另外,麦芽吸收了少量水分,再粉碎时谷皮不碎,对麦汁过滤有利。干麦芽除根稍冷后,应立即送入立仓贮存。如采用袋装,因与空气接触面大而易吸收水,故贮存期较短,不宜超过6个月。2. 麦汁制备工段麦汁制备工段俗称糖化。将麦芽粉碎后与温水混合,借助麦芽自身的多种水解酶,将淀粉和蛋白质等高分子物质进一步分解成可溶性低分子糖类、糊精、氨基酸、腖、肽等,麦芽内溶物的浸出率可达80,这就是糖化过程。3 发酵工段加酒花后的澄清麦汁冷却至6.5-8.0,接种酵母,发酵正式开始。酵母对以麦芽糖为主的麦汁进行主发酵,产生乙醇和二氧化碳。4. 灌装工段经过发酵的成熟酒俗称嫩酒,送入后酵罐,长期低温贮存。残余酵母和蛋白质等沉积于贮罐底部,少量悬浮于酒中,须经分离后才能罐装。在滤酒工艺中,经过滤器截留的酒渣、部分过滤材料及残酒随水排入下水道。经过滤后的成品酒可直接桶装或罐装。装酒用的桶或罐,在装酒前要经行清洗和消毒,因此清洗水中含有残酒和酒泥。1.2 废水、废物来源在麦芽制备工段的废水主要来自浸麦、洗麦。废水中含有大麦粒、瘪大麦、麦芒、麦皮和泥沙等悬浮固体以及谷皮的浸出物,如宁物质、矿物质、蛋白质、苦味质等。悬浮固体含量大约占原大麦投加质量的2左右。每浸渍1t大麦产生COD污染物约10-12kg或BOD污染物5-6kg,废水中挟带的浮麦量约20.0kg,这与国外资料提供的数据基本相符。麦汁制备工段的废水主要来自糖化锅与糊化锅的刷锅水、清洗水和麦糟贮存池底流出的麦糟水。一般冷、热凝固物也含在废水中排出,所以糖化工序产生的废水中有机物质比较多,COD浓度高达2000040000mg/L。该废水的排放量约占废水中有机物总量的5-10,废水排放为间歇排放。麦汁制备工段的废弃物有麦糟、冷和热凝固物。麦糟使麦汁制备过滤后产生的副产物,含水75-80,组分主要有蛋白质、脂肪、淀粉、还原糖、粗纤维以及灰分。热凝固物使在麦汁煮沸过程中,由于蛋白质变性和多酚物质氧化、聚合而产生的。热凝固物含水80,组分为蛋白质、酒花树脂、多酚物质和灰分。冷凝固物是在麦汁冷却过程中析出的,主要组分是蛋白质、碳水化合物、多酚物质和灰分。在此工段,每制1t成品酒,产生COD污染物7.24kg或BOD污染物3.77kg。发酵工段的废水来源于洗涤水,COD浓度为2000-3000mg/L,排放量约为废水总量的15-20,采取间歇排放的方式。这个工段的废弃物是酵母和硅藻土。酵母是在啤酒发酵过程中沉淀下俩的,一般因为生产所需,沉淀下来的酵母经洗涤后重复使用,但多余的和失去活力的酵母,如不综合利用则随废水排出。酵母除含水80-85外,其他组分是蛋白质、脂肪、纤维、灰分和无机氮浸出物。在此工段,每制1t成品酒,产生COD污染物8.3kg或BOD污染物5kg。灌装工段的废水来自洗瓶水、喷淋杀菌水、冷却水、地面冲洗水和包装物破损流出的残酒等。这部分的排放量较大,约占总量的30-40,COD浓度为500-800mg/L,采取连续排放的方式。1.3 啤酒废水的特征及水质水量1.特点啤酒厂生产啤酒过程用水量很大,特别是酿酒、罐装工艺过程大量使用新鲜水,相应产生大量废水。啤酒的生产工艺较多,不同的啤酒厂生产过程中吨酒耗量和水质相差很大。管理和技术水平较高的啤酒厂耗水量为812 吨每吨,我国啤酒厂的吨酒耗水量一般大于该参数。国内啤酒从糖化到罐装总耗水1020 立方米每吨。酿造啤酒消耗的大量水除一部分转入产品外,绝大部分作为工业废水排入环境。啤酒工业废水按其有机物含量可分为以下几类:(1)冷却水 冷冻机,麦汁和发酵的冷却水等。这类废水基本上未受污染。(2)清洗废水 如大麦浸渍废水,大麦发芽降温喷雾水,清洗生产装置废水,漂洗酵母水,洗瓶机初期洗涤水,酒罐消毒废水,巴斯德杀菌喷淋水和地面冲洗水等,这类废水受到不同程度的有机污染。(3)冲渣废水 如麦渣液,冷热凝固物酒槽剩余酵母,酒泥,滤酒渣和残碱性洗涤液等,这类废水中含有大量的悬浮性固体有机物,工作中将产生麦汁冷却水,装置洗涤水、麦糟、热凝固物和酒花糟和大量悬浮固体。(4)罐装废水 在罐装酒时,机器的冒泡滴时有发生,还经常出现冒酒,使废水中掺入大量残酒。另外喷淋时由于用热水喷淋,啤酒升温引起瓶内压力上升,“炸瓶”现象时发生,致使大量啤酒洒在喷淋水中。为防止生物污染,循环使用喷淋水时需加入防腐剂,因此别更换下来的废喷淋水含防腐剂成分。(5) 洗瓶废水清洗瓶子时先用碱性洗涤剂浸泡,然后用压力水初洗和终洗,瓶子清洗水中含有残余碱性洗涤剂、纸浆、染料、浆糊、残酒和泥沙等。碱性洗涤剂要定期更换,若直接排入下水道可使啤酒废水呈碱性,因此废碱性洗涤剂应先进入调节、沉淀装置进行单独处理。若将洗瓶废水的排出液经处理后储存起来用以调节废水的酸碱值(啤酒废水平时呈酸性),则可以节省污水处理的药剂用量。2.废水水质排放的啤酒废水超标项目主要是COD、BOD、SS、pH值4项,从各车间排放的废水水质水量波动较大。水质变幅范围一般为:pH值5-7,水温10-30,COD 8500-11000mg/L,BOD 4500-5500mg/L,SS 800-450mg/L,属高浓度有机废水,BOD/COD约为0.5-0.52,可生化性良好。第2章 毕业设计设计任务书1. 毕业设计的意义毕业设计是学生学习阶段的最后一个环节。与以往理论课学习不同,具有巩固、深化和综合运用所学理论知识的作用,也可以通过毕业设计来体现你的个性。毕业设计是实际工作的前奏,毕业设计阶段的学习状况将直接影响今后的工作优劣。毕业设计也是培养学生创新能力的一个重要阶段。通过毕业设计,使学生熟悉并掌握污水处理厂的设计内容、设计原理、方法和步骤,能根据设计原始资料正确的选定设计方案,掌握污水厂设计的基本流程及各构筑物的设计方法,熟悉设计计算书和设计说明书的编写内容和编制方法,并绘制工程图,部分图纸深度为施工图阶段。2. 设计题目某啤酒厂5000m3/d该厂主要产品为啤酒,年产量10万吨。废水中主要成分为啤酒原料中的淀粉和酒糟中的蛋白质等,该地属温带半湿润季风型大陆气候,主导风向:夏季 南风15 冬季 东北风15;气温:年平均气温18.2,极端最高气温43,极端最低气温0。3.设计任务(1)全面熟悉工业污水处理的传统工艺和先进工艺;(2)根据预定工艺方案,完成计算书;(3)每人皆需完成方案设计、工艺总体初步设计和局部施工图设计。4.设计资料(1)进水水质及排放标准 进水 出水悬浮物 (SS): 800-450mg/L 160mg/L生化需氧量 (BOD) 4500-5500mg/L 100mg/L化学需氧量 (COD) 8500-11000mg/L 150mg/LPH : 5-7 6-9水温:10-30 (2)厂区地形南北长50米,东西长70米。地面标高0.00,排水渠底面标高-0.5m 。5.设计依据:(1)排水工程;上下册 中国建筑工业出版社(2)城镇污水处理厂污染物排放标准(GB 18918-2002)(3)地面水环境质量标准 (GB3838-2002)(4)城镇污水处理工程项目建设标准 (2001)(5)给水排水设计手册6.设计成果要求(1)设计必须贯彻执行国家有关工程建设的政策和法令,应符合国家现行的设计规范。(2)说明书内容要完整、书写要认真。(3)图纸表达清楚,计算正确,满足深度要求,字体用仿宋字。(4)设计应体现出技术上的先进性、可靠性和经济上的合理性,并将其内容写入设计说明书中。(5)毕业设计成果包括:设计说明书、计算书、设计图纸。7.关于计算机绘图(1)作为成果提交的图纸,除要求一张手工绘图外,全部为计算机绘图。绘制的图纸不少于6张。此外还应满足下列要求: 污水处理厂工艺总平面图1张 污水处理厂污水和污泥处理高程图1张 污水处理厂泵站图1张 污水和污泥处理主体构筑物2-3张 指导老师根据情况指定2张 超额完成的内容学生自选(2)在计算机书中应手工绘出草图,经指导老师认可后方可进入计算机绘图阶段。第3章 方案选择3.1、啤酒废水的处理方法“七五”以来,我国对啤酒废水的处理工艺和技术进行了大量的研究和探索,特别是轻工业系统的设计院和科研单位,对啤酒废水的处理进行了各方面的试验、研究和实践,取得了行之有效的成功经验,逐渐形成了以生化为主、生化与物化相结合的处理工艺。生化法中常用的有活性污泥法、生物膜法、厌氧与好氧相结合法、水解酸化与SBR相组合等各种处理工艺。这些处理方法与工艺各有其特点和不足之处,但各自都有较为成功的经验。目前还有不少新的处理方法和工艺优化组合正在试验和研究,有的已取得了理想的成效,不久将应用于实践中。啤酒废水的特点之一是BOD/COD值高,一般在50及以上,非常有利于生化处理,同时生化处理与普通物化发、化学法相比较:一是处理工艺比较成熟;二是处理效率高,COD、BOD除去率高,一般可达80-90以上;三是处理成本低(运行费用省)。因此生物处理在啤酒废水处理中,得到了充分重视和广泛采用。现把目前啤酒废水处理中相对比较成熟的生物处理工艺,经行一些阐述和比较:(一)、酸化SBR 法处理啤酒废水: 其主要处理设备是酸化柱和SBR反应器。这种方法在处理啤酒废水时,在厌氧反应中,放弃反应时间长、控制条件要求高的甲烷发酵阶段,将反应控制在酸化阶段,这样较之全过程的厌氧反应具有以下优点:(1)由于反应控制在水解、酸化阶段反应迅速,故水解池体积小;(2)不需要收集产生的沼气,简化了构造,降低了造价,便于维护,易于放大;(3)对于污泥的降解功能完全和消化池一样,产生的剩余污泥量少。同时,经水解反应后溶解性COD比例大幅度增加,有利于微生物对基质的摄取,在微生物的代谢过程中减少了一个重要环节,这将加速有机物的降解,为后续生物处理创造更为有利的条件。(4)酸化SBR法处理高浓度啤酒废水效果比较理想,去除率均在94%以上,最高达99%以上。要想使此方法在处理啤酒废水达到理想的效果时运行环境要达到下列要求:(1)酸化SBR法处理中高浓度啤酒废废水,酸化至关重要,它具有两个方面的作用,其一是对废水的有机成分进行改性,提高废水的可生化性;其二是对有机物中易降解的污染物有不可忽视的去除作用。酸化效果的好坏直接影响SBR反应器的处理效果,有机物去 除主要集中在SBR反应器中。(2)酸化SBR法处理啤酒废水受进水碱度和反应温度的影响,最佳温度是24,最佳碱度范围是500750mg/L。视原水水质情况,如碱度不足,采取预调碱度方法进行本工艺处理;若温度差别不大,运行参数可不做调整,若温度差别较大,视具体情况而定。(二) 、 UASB 好氧接触氧化工艺处理啤酒废水:此处理工艺中主要处理设备是上流式厌氧污泥床和好氧接触氧化池,处理主要过程为:废水经过转鼓过滤机,转鼓过滤机对SS的 去除率达10%以上,随着麦壳类有机物的去除,废水中的有机物浓度也有所降低。调节池既有调节水质、水量的作用,还由于废水在池中的停留时间较长而有沉淀和厌氧发酵作用。由于增加了厌氧处理单元,该工艺的处理效果非常好。上流式厌氧污泥床能耗低、运行稳定、出水水质好,有效地降低了好氧生化单元的处理负荷和运行能耗(因为好氧处理单元的能耗直接和处理负荷成正比)。好氧处理(包括好氧生物接触氧化池和斜板沉淀池)对废水中SS和COD均有较高的去除率,这是因为废水经过厌氧处理后仍含有许多易生物降解的有机物。 该工艺处理效果好、操作简单、稳定性高。上流式厌氧污泥床和好氧接触氧化池相串联的啤酒废水处理工艺具有处理效率高、运行稳定 、能耗低、容易调试和易于每年的重新启动等特点。只要投加占厌氧池体积1/3的厌氧污泥菌种,就能够保证污泥菌种的平稳增长,经过3个月的调试UASB即可达到满负荷运行。整个工艺对COD的去除率达96.6%,对悬浮物的去除率达97.3%98%,该工艺非常适合在啤酒废水处理中推广应用。(三)、 新型接触氧化法处理啤酒废水:此方法处理过程为 :废水首先通过微滤机去除大部分悬浮物,出水进入调节池,然后中提升泵打入VTBR反应器中进行生化处理,通过风机强制供风使废水与填料接触,维持生化反应的需氧量,VTBR反应器出水进入沉淀器,去除一部分脱落的生物膜以减轻气浮设备的处理负荷,之后流人气浮设备去除剩余的生物膜,污泥及浮渣送往污泥池浓缩后脱水。 该处理工艺有以下主要特点:VTBR反应器由废旧酒精罐改造而成,节省了投资。与钢筋混凝土结构相比,具有一次性投资低,运行稳定,处理效果好等特点。冬季运行时,在VTBR反应器外部加了一层保温材料,使罐中始终保持较高的温度,提高了生物的活性。因 VTBR反应器高达10m左右,水深大,所选用风机为高压风机,风压为98kPa,N75kw,耗电量大。(四)、 生物接触氧化法处理啤酒废水:该工艺采用水解酸化作为生物接触氧化的预处理,水解酸化菌通过新陈代谢将水中的固体物质水解为溶解性物质,将大分子有机物降解为小分子有机物。水解酸化不仅能去除部分有机污染物,而且提高了废水的可生化性,有益于后续的好氧生物接触氧化处理。该工艺在处理方法、工艺组合及参数选择上是比较合理的,充分利用各工序的优势将污染物质转化、去除。然而,如果由于某些构筑物的构造设计考虑不周会影响运行效果,致使出水水质不理想,使生物接触氧化池的出水(静沉30 min的澄清液)COD为500600 mg/L,经混凝气浮处理后出水COD仍高达300 mg/L,远高于排放要求(150 mg/L)。 但是此处理方法在设计和运行中回出现以下问题 :(1)水解酸化池存在的问题主要是沉淀污泥不能及时排除。由于该废水中悬浮物浓度较高,因而池内污泥产量很大,而原工艺仅在水解酸化池前端设计了污泥斗,所以池子的后部很快就淤满了污泥。另外,随着微生物量的增加在软性生物填料的中间部位形成了污泥团,使得传质面积减小。针对污泥淤积情况,在水解酸化池前可增设一级混凝气浮以去除水中的悬浮物,经此改进后水解酸化池能长期、稳定、有效地运行,其出水能收到较好的效果。不过,增设混凝气浮增加了运行费用,而且气浮过程中溶入的O2还可能对水解酸化产生不利影响。因此,在设计采用水解酸化处理悬浮物浓度高的污水时,可增设污泥斗的数量以便及时排除沉淀污泥。此外,为防止填料表面形成污泥团应采用比表面积大、不结泥团的半软性填料。(2)如果废水中污染物浓度较高或前处理效果不理想,生物接触氧化池前端的有机物负荷较高,使得供氧相对不足,此时该处的生物膜呈灰白色,处于严重的缺氧状态,而池末端成熟的好氧生物膜呈琥珀黄色。同时,水中的生物活性抑制性物质浓度也较高,对微生物也有一定的抑制作用。这些因素使得生物接触氧化池没有发挥出应有的作用,处理效果不理想。鉴于此,可一采取阶段曝气措施即多点进水,污水沿池长多点流入生物接触氧化池以均分负荷,消除前端缺氧及抑制性物质浓度较高的不利影响。改为多点进水并经过一段时间的稳定运行后,生物接触氧化池的出水(30 min的澄清液)COD为200300 mg/L。再经混凝气浮工序处理后最终出水COD150 mg/L(一般在130 mg/L),达到了排放要求。(3)在调试运行过程中,生物接触氧化池中生物膜脱落、气泡直径变大(曝气方式为微孔曝气)、出水浑浊、处理效果恶化的现象时有发生。经研究、分析、验证发现这是由于负荷波动或操作不当造成溶解氧不足而引起的。溶解氧不足使得生物膜由好氧状态转变为厌氧状态,其附着力下降,在空气气泡的搅动下生物膜大量脱落,导致水粘度增加、气泡直径增大、氧转移效率下降,这又进一步造成缺氧,如此形成恶性循环致使处理效果恶化。(4)在调试运行初期,发生这种现象时一般是增大供气量以提高供氧能力来消除缺氧,结果由于气泡搅动强度增大,造成了更大范围的生物膜脱落、水粘度更大、氧转移效率更低,非但没 能提高供氧能力反而使情况更糟。正确的处理措施应是减小曝气量,待脱落的生物膜随水流 流出后再逐渐增加曝气量使溶解氧浓度恢复到原有水平,若水温适宜则23 d后生物膜就可恢复正常。 因此当采用此工艺处理啤酒废水时要遵循下列要求:采用水解酸化作为预处理工序时应考虑悬浮物去除措施。采用推流式生物接触氧化池时,为避免前端有机物负荷过高可采用多点进水。应严格控制溶解氧浓度,供氧不足会造成生物膜大范围脱落,导致运行失败。(五)、 内循环 UASB 反应器氧化沟工艺处理啤酒废水:此工艺采用厌氧和好氧相串联的方式,厌氧采用内循环UASB技术,好氧处理用地有一处狭长形池塘,为了降低土建费用,因地制宜,采用氧化沟工艺。本处理工艺的关键设备是UASB反应器。该反应器是利用厌氧微生物降解废水中的有机物,其主体分为配水系统,反应区,气、液、固三相分离系统,沼气收集系统四个部分。厌氧微生物对水质的要求不象好氧微生物那么宽,最佳pH为6.57.8,最佳温度为35402,而本工程的啤酒废水水质超出了这个范围。这就要求废水进入UASB反应器之前必需进行酸度和温度的调节。这无形中增加了电器。仪表专业的设备投资和设计难度。 内循环UASB技术是在普通UASB技术的基础上增加一套内循环系统,它包括回流水池及回流水泵。UASB反应器的出水水质一般都比较稳定,在回流系统的作用下重新回到配水系统。这样一来能提高UASB反应器对进水水温、pH值和COD浓度的适应能力,只需在UASB反应器进水前对其pH和温度做一粗调即可。 UASB反应器采用环状穿孔管配水,通过三相分离器出水,并在三相分离器的上方增加侧向流絮凝反应沉淀器,它由玻璃钢板成60安装而成,能在最大程度上截留三相分离出水中的颗粒污泥。 此处理工艺主要有以下特点:实践证明,采用内循环UASB反应器氧化沟工艺处理啤酒废水是可行的,其运行结果表明COD Cr 总去除率高达95以上。由于采用的是内循环UASB反应器和氧化沟工艺串联组合的方式,可根据啤酒生产的季节性、水质和水量的情况调整UASB反应器或氧化询处理运行组合,以便进一步降低运行费用。(六)、UASB+SBR法处理啤酒废水:本处理工艺主要包括UASB反应器和SBR反应器。将UASB和SBR两种处理单元进行组合,所形成的处理工艺突出了各自处理单元的优点,使处理流程简洁,节省了运行费用,而把UASB作为整个废水达标排放的一个预处理单元,在降低废水浓度的同时,可回收所产沼气作为能源利用。同时,由于大幅度减少了进入好氧处理阶段的有机物量,因此降低了好氧处理阶段的曝气能耗和剩余污泥产量,从而使整个废水处理过程的费用大幅度减少。采用该工艺既降低处理成本,又能产生经济效益。并且UASB池正常运行后,每天产生大量的沼气,将其回收作为热风炉的燃料,可供饲料烘干使用。UASB去除COD达7500kg/d,以沼气产率为0.5m3/kgCOD计算,UASB产气量为3 500m3/d(甲烷含量为55%65%)。沼气的热值约为22 680kJ/m 3 ,煤的热值为21 000 kJ/t计算,则1m 3 沼气的热值相当于1 kg原煤,这样可节煤约4 t/d左右,年收益约为39.6万元。 UASB+SBR法处理工艺与水解酸化+SBR处理工艺相比有以下优点:节约废水处理费用。UASB取代原水解酸化池作为整个废水达标排放的一个预处理单元,削减了全部进水COD的75%,从而降低后续SBR池的处理负荷,使SBR池在废水处理量增加的情况下,运行周期同样为12 h,废水也能达标排放。也就是说,耗电量并没有随废水处理量的增加而增加。同原工艺相比较,每天实际节约1 5002 500 m 3 废水的处理费用,节约能耗约21.4 万元/a。节约污泥处理费用。废水经过UASB处理后,75%的有机物被去除,使SBR处理负荷大大降低,产泥量相应减少。水解酸化+SBR处理工艺工艺计算,产泥量达17 t/d(产泥率为0.3 kg污泥/kgCOD,污泥含水率为80%),UASB+SBR法处理工艺产泥量只有5 t/d(含水率为80%)左右,只有水解酸化+SBR处理工艺的1/3,污泥处理费用大大减少,节约污泥处理费用约为20元/日。3.2、本设计工艺的选择及其流程通过以上的比较可以看出UASB+SBR法处理啤酒废水比较合理。此设计选用SBR的改进型工艺CAST工艺。实践证明,UASB 成功处理高浓度啤酒废水的关键是培养出沉降性能良好的厌氧颗粒污泥。颗粒污泥的形成时厌氧细菌群不断繁殖,积累的结果,较多的污泥负荷有利于细菌获得充足的营养 基质,故对颗粒污泥的形成和发展具有决定性的促进作用;适当高的水利负荷将长生污泥的水利筛选,淘汰沉降性能差的絮体污泥而留下沉降性能好的污泥同时产生剪切力,使污泥不对流旋转,有利于丝状菌相互缠绕成球。此外,一定的进水碱度也是颗粒污泥形成的必要条件,因为厌氧生物的生长要求适当高的碱度,例如:产甲烷细菌生长的最适宜PH 值为6.87.2。一定的碱度既能维持细菌生长所需的PH 值,又能保证足够的平衡缓冲能力。由于啤酒废水的碱度一般为500800mgL-1(以Caco3 计),碱度不足,所以需投加工业碳酸钠或氧化钙加以补充。研究表明,在 UASB启动阶段,保持进水碱度不低于1000mg.L-1 对于颗粒污泥的培养和反应器在高负荷下的良好运行十分必要。应该指出。啤酒废水中的乙醇是一种有效的颗粒化促进剂,它为UASB 的成功运行提供了有利的条件。总之,UASB 具有效能高,处理费用低,电耗省,投资少,占地面积小等一系列优点,完全适用于高浓度啤酒废水的治理。其不足之处是出水CODcr 的浓度仍达500mg.L-1 左右,需进行再处理或好氧处理串连才能达标排放。1.处理流程说明车间各工段废水由厂区排水管(渠)收集后经排水总渠送至废水处理站进行处理。由于排放污水中含有许多如空麦壳,酵母,纸削等悬浮物以及如破碎的玻璃瓶等物质。这些东西如果直接进入啤酒废水处理系统,将影响处理设施的正常运行,故在废水进入处理设施前需设置格栅,以驱除废水中较粗大悬浮物,栅渣外运,废水经过格栅后有提升泵提升经过过滤筛,去除细小悬浮物后进入调节池。由于啤酒废水排放的废水量及水质不均匀,特别是麦芽的制备和糖化废水为间接排放,所以为保障后续处理的正常运行须设置调节池以便对水量和水质进行调节,使调节后的水量,水质尽量均匀。从调节池流出的水进入UASB反应池,UASB反应池是进行废水处理的主要构筑物之一,对高浓度的废水进行厌氧发酵,去除大部分的有机污染物。对从UASB反应器出来的低浓度的有机废水进行进一步好氧处理,去除剩余的有机污染物,完成废水的最后处理,使出水水质达到排放标准。CAST池和UASB池中的污泥排入污泥浓缩池,污泥浓缩池的泥通过污泥泵房进入污泥脱水间进行脱水,脱水后的泥饼外运。流程如图所示:风机提升泵房污泥浓缩池CAST池调节池集水池UASB池排水格栅废水集泥井贮泥池污泥泵污泥脱水间泥饼外运滤液回流上清液 图3.1 UASBCAST 处理工艺流程图2.主要构筑物工作原理说明。(1)UASB反应池UASB,即上流式厌氧污泥床,集生物反应与沉淀于一体,是一种结构紧凑,效率高的厌氧反应器,由污泥反应区、气液固三相分离器(包括沉淀区)和气室三部分组成。在底部反应区内存留大量厌氧污泥,具有良好的沉淀性能和凝聚性能的污泥在下部形成污泥层。要处理的污水从厌氧污泥床底部流入与污泥层中污泥进行混合接触,污泥中的微生物分解污水中的有机物,把它转化为沼气。沼气以微小气泡形式不断放出,微小气泡在上升过程中,不断合并,逐渐形成较大的气泡,在污泥床上部由于沼气的搅动形成一个污泥浓度较稀薄的污泥和水一起上升进入三相分离器,沼气碰到分离器下部的反射板时,折向反射板的四周,然后穿过水层进入气室,集中在气室沼气,用导管导出,固液混合液经过反射进入三相分离器的沉淀区,污水中的污泥发生絮凝,颗粒逐渐增大,并在重力作用下沉降。沉淀至斜壁上的污泥沼着斜壁滑回厌氧反应区内,使反应区内积累大量的污泥,与污泥分离后的处理出水从沉淀区溢流堰上部溢出,然后排出污泥床。它的污泥床内生物量多,容积负荷率高,废水在反应器内的水力停留时间较短,因此所需池容大大缩小。设备简单,运行方便,勿需设沉淀池和污泥回流装置,不需充填填料,也不需在反应区内设机械搅拌装置,造价相对较低,便于管理,且不存在堵塞问题。(2)CAST反应池CAST是循环式活性污泥法的英文简称, 为一间歇式生物反器,在此反应器中进行交替的曝气-非曝气过程的不断重复,将生物反应过程和泥水分离过程结合在一个池子中完成。CAST反应池一般用隔墙分隔成三个区:生物选择区、预反应区、主反应区。生物选择区内不进行曝气,类似于SBR法中的限制性曝气阶段。在该区内,回流污泥中的微生物大量吸附废水中的有机物,能较迅速有效地降低废水中有机物浓度;预反应区采取半限制性曝气,溶解氧保持在0.5mgL左右,使该区存在着反硝化进程的可能;主反应区进行强制鼓风曝气,使有机物及氨氮得到生化与硝化。CAST反应池的运行一般包括三个阶段:进水、曝气、回流阶段;沉淀阶段;滗水、排泥阶段。在进水阶段,一边进水一边曝气,同时进行污泥回流,本阶段运行时间一般为2h;在沉淀和排水阶段,停止曝气,同时停止进水和污泥回流,保证了沉淀过程在静止的环境中进行,并使排水的稳定性得到保障,沉淀排水阶段一般为2h。对于二池CAST系统这样的运行程序保证了整体进水的连续性和风机的连续运行。第4章 各构筑物计算4.1 格栅1、 格栅的栅条间隙数 式中 n-格栅栅条间隙数(个) Q-设计流量(m3/s) -格栅倾角() b-格栅栅条间隙(m) h-格栅栅前水深(m) v-格栅过栅流速(m/s)设计中取Q=5000 m3/d =0.0579 m3/s , =75,b=0.01m ,h=0.5m , v=0.6m/s则 n=18.64取20个2、 格栅槽宽度 B=S(n-1)+bn式中 B-格栅槽宽度(m) s-每根格栅条的宽度(m)设计中取s=0.01m B=0.01(201)0.0120 =0.39m 取 B=0.4m3、 进水渠道渐宽部分的长度 =式中 -进水渠道渐宽部分的长度(m) -进水明渠宽度(m) -渐宽处角度(),一般采用10-30设计中取=0.14m ,=20 = =0.34m4、 出水渠道渐宽部分的长度 = -出水渠道渐宽部分长度(m) -渐宽处角度()=20 = =0.34m5、 通过格栅的水头损失 = 式中 -格栅条的阻力系数,栅条断面为锐边矩形断面=2.42 -格栅受污物堵塞时的水头损失增大系数,一般采用 =3= =0.129m6、 格后明渠的总高度 H= 式中 -明渠超高(m),一般采用0.3-0.5设计中取=0.3m H=0.5+0.129+0.3=0.929m7、格栅槽总长度L=+0.5+1.0+ 式中 -格栅明渠的深度(m) L=0.34+0.34+0.5+1.0+ =2.39m8、每日栅渣量 式中-设计水量 -栅渣量(),取0.1-0.01粗格栅有小值,细格栅用大值,中格栅有中值 取=0.05,=1.5则 = (采用人工清渣)4.2、 调节池1、 设计参数 水力停留时间 T=6h; 设计流量 Q=5000=208.32、有效容积、表面、有效水深 V=QT=208.36=1249.8 取池子总高度H=5.5,其中超高0.5m,有效水深h=5m,则池面积为 A= 池长取16m,尺宽取16m,则实际有效水深为 m则池子总尺寸为 LBH=16165.53、工艺装备调节池内设置搅拌机2台,单台功率9kw。4.3、过滤机设计参数:过滤机设计水量为: Q = 5000 m3/d = 208.3 m3/h = 0.0579 m3/s过滤机进出水水质指标 ,见表41表41 过滤机进出水水质表水质指标CODBODSS进水水质(mg/l)97505000625去除率(%)7750出水水质(mg/l)9067.54650312.54.4、UASB反应池4.4.1 UASB反应器所需容积及主要尺寸的确定1、UASB反应器的有效容积对于中等浓度和高浓度的有机废水,一般情况下,有机容积负荷率是限制因素,反应器的容积与废水量、废水浓度和允许的有机物容积负荷去除率有关。设计容积负荷为=6.0kgCOD/(d),COD 去除率为80,则UASB反应器有效容为:式中 -设计流量-容积负荷,kg/() , -进出水COD浓度,mg/L-容积负荷,kg/()=2、UASB反应器的形状和尺寸据资料,经济的反应器高度一般为46m之间,并且在大多数情况下这也是系统优化的运行范围。升流式厌氧污泥床的池形有矩形、方形和圆形。圆形反应器具有结构较稳定的特点,但是建造圆形反应器的三相分离器要比局限性和方形反应器复杂得多,因此本设计选用矩形池。从布水均匀性和经济性考虑,矩形池长宽比在2:1左右较为合适。设计反应器的有效高度为h=6m,则横截面积S=设计4座UASB反应池每座横截面积=236,设池长L约为池宽B的两倍,则可取每座池长L=21m,宽B=12m,一般应用时反应器装夜量为7090,本工程设计反应器总高度H=7.5m,其中超高0.5m 。反应器的总容积V=BLH=2112(7.5-0.5)=1764有效容积为=1416.7,则体积有效系数为:80.3,符合有机负荷要求。3、水力停留时间和水力负荷率对于颗粒污泥,水力负荷=0.10.9 ,符合要求4.4.2 进水分配系统的设计1、布水点设置进水方式的选择应根据进水浓度及进水流量而定,通常采用的是连续均匀进水方式。布水点的数量可选择一管一点或一管多点的布水方式,布水点数量与处理废水的流量进水浓度、容积、负荷等因素有关。由于所取容积负荷为6kgCOD/(d),因此每个点的布水负荷面积大于2。本次设计池中共设置84个布水点,则每点负荷面积为:2、配水系统形式UASB反应器的进水分配系统形式多样,主要有树枝管式、穿孔管式、多管多点式和上给式4种。本次设计使用树枝管式配水,为配水均匀,配水管中心距可采用1.02.0m,出水孔孔距也可才用1.02.0m,孔径一般为1020mm,常采用15mm,孔口向下或与垂线呈45方向,每个出水孔的服务面积一般为24。配水管中心距池底一般为2025cm,配水管的直径最好不小于100mm。为了使穿孔管出水均匀,要求出口流速不小于2m/s.进水总管管径取150mm,流速约为0.86m/s。每个反应器中设置12根支管,管径为100mm,每两根之间的距离为1650mm,每根管上有6个配水孔,孔距为1700mm,孔径采用15mm,共设布水孔72个。本装置采用连续进料方式,布水孔距1700mm。为了增强污泥和废水之间的接触,减少底部进水管的堵塞,建议进水点距反应器池底200mm25
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年上海租车合同范本
- 婚后贷款赠予合同范本
- 电脑回收采购合同范本
- 2025赠与合同范本下载
- 光纤布线施工合同范本
- 陵园合同范本
- 大型喷泉采购合同范本
- 房屋加固质保合同范本
- 卖家单方解约合同范本
- 餐厅房东 合同范本
- 2025年体育教练员执业能力考试试题及答案解析
- GB/T 708-2019冷轧钢板和钢带的尺寸、外形、重量及允许偏差
- GB/T 40549-2021焦炭堆积密度小容器测定方法
- GB/T 17395-2008无缝钢管尺寸、外形、重量及允许偏差
- GB 15630-1995消防安全标志设置要求
- 实习协议模板(最新版)
- 《新视野大学英语预备级1》教案
- 车间拆除及场地土壤治理与地下水修复工程项目技术方案工程方案和设备方案
- 无跨越架封网装置计算程序(直接求解)
- 《病理检验技术》课程标准
- 医务人员礼仪培训
评论
0/150
提交评论