湖北宜昌葛洲坝中学高中数学3.1方程的根与函数的零点学案无答案新人教A必修1_第1页
湖北宜昌葛洲坝中学高中数学3.1方程的根与函数的零点学案无答案新人教A必修1_第2页
免费预览已结束,剩余2页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

3.1.1方程的根与函数的零点课程标准1. 结合二次函数的图象,判断一元二次方程根的存在性及根的个数,从而了解函数的零点与方程根的联系;2. 掌握零点存在的判定定理.情景引入1.复习:方程+bx+c=0 (a0)的根与二次函数y=ax+bx+c (a0)的图象之间有什么关系?判别式一元二次方程的根二次函数图象探究新知探究一:函数零点与方程的根的关系根据上表,可以得到:一元二次方程的根就是相应二次函数的图象与x轴交点的 .新知:对于函数,我们把使的实数x叫做函数的 .反思:函数的零点、方程的实数根、函数 的图象与x轴交点的横坐标,三者有什么关系?试试:(1)函数的零点为 ; (2)函数的零点为 .小结:方程有实数根函数的图象与x轴有交点函数有零点.探究二:零点存在性定理问题: 作出的图象,求的值,观察和的符号 观察下面函数的图象,在区间上 零点; 0;在区间上 零点; 0;在区间上 零点; 0.新知:如果函数在区间上的图象是连续不断的一条曲线,并且有0,则函数f(x)在区间上的零点的情况如何? (3)能用二分法函数零点的条件?典型例题:例1 借助计算器或计算机,利用二分法求方程的近似解.(精确到0.1)变式:求方程的根大致所在区间.(精确到区间长度为0.5)课堂检测1. 求方程的解的个数及其大致所在区间(精确到区间长度为0.5).2.求函数的一个正数零点(精确到)零点所在区间中点函数值符号区间长度3. 用二分法求的近似值.课堂总结 二分法的概念;二分法步骤;二分法思想. 知识拓展高次多项式方程公式解的探索史料在十六世纪,已找到了三次和四次函数的求根公式,但对于高于4次的函数,类似的努力却一直没有成功,到了十九世纪,根据阿贝尔(Abel)和伽罗瓦(Galois)的研究,人们认识到高于4次的代数方程不存在求根公式,亦即,不存在用四则运算及根号表示的一般的公式解同时,即使对于3次和4次的代数方程,其公式解的表示也相当复杂,并不适宜作具体计算因此对于高次多项式函

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论