




已阅读5页,还剩12页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2013寒假班 周老师初三数学 圆 专题训练一、圆的概念集合形式的概念: 1、 圆可以看作是到定点的距离等于定长的点的集合; 2、圆的外部:可以看作是到定点的距离大于定长的点的集合; 3、圆的内部:可以看作是到定点的距离小于定长的点的集合轨迹形式的概念:1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆;(补充)2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线(也叫中垂线); 3、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线; 4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线; 5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。二、点与圆的位置关系1、点在圆内 点在圆内;2、点在圆上 点在圆上;3、点在圆外 点在圆外;三、直线与圆的位置关系1、直线与圆相离 无交点;2、直线与圆相切 有一个交点;3、直线与圆相交 有两个交点;四、圆与圆的位置关系外离(图1) 无交点 ;外切(图2) 有一个交点 ;相交(图3) 有两个交点 ;内切(图4) 有一个交点 ;内含(图5) 无交点 ; 五、垂径定理垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧; (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧; (3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧 以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即: 是直径 弧弧 弧弧中任意2个条件推出其他3个结论。推论2:圆的两条平行弦所夹的弧相等。 即:在中, 弧弧六、圆心角定理圆心角定理:同圆或等圆中,相等的圆心角所对的弦相等,所对的弧相等,弦心距相等。 此定理也称1推3定理,即上述四个结论中,只要知道其中的1个相等,则可以推出其它的3个结论,即:; 弧弧七、圆周角定理1、圆周角定理:同弧所对的圆周角等于它所对的圆心的角的一半。即:和是弧所对的圆心角和圆周角 2、圆周角定理的推论:推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧是等弧;即:在中,、都是所对的圆周角 推论2:半圆或直径所对的圆周角是直角;圆周角是直角所对的弧是半圆,所对的弦是直径。即:在中,是直径 或 是直径推论3:若三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。即:在中, 是直角三角形或注:此推论实是初二年级几何中矩形的推论:在直角三角形中斜边上的中线等于斜边的一半的逆定理。八、圆内接四边形圆的内接四边形定理:圆的内接四边形的对角互补,外角等于它的内对角。 即:在中, 四边形是内接四边形 九、切线的性质与判定定理(1)切线的判定定理:过半径外端且垂直于半径的直线是切线; 两个条件:过半径外端且垂直半径,二者缺一不可 即:且过半径外端 是的切线(2)性质定理:切线垂直于过切点的半径(如上图) 推论1:过圆心垂直于切线的直线必过切点。 推论2:过切点垂直于切线的直线必过圆心。以上三个定理及推论也称二推一定理:即:过圆心;过切点;垂直切线,三个条件中知道其中两个条件就能推出最后一个。十、切线长定理切线长定理: 从圆外一点引圆的两条切线,它们的切线长相等,这点和圆心的连线平分两条切线的夹角。即:、是的两条切线 平分十一、圆幂定理(1)相交弦定理:圆内两弦相交,交点分得的两条线段的乘积相等。即:在中,弦、相交于点, (2)推论:如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项。即:在中,直径, (3)切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项。即:在中,是切线,是割线 (4)割线定理:从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等(如上图)。即:在中,、是割线 十二、两圆公共弦定理圆公共弦定理:两圆圆心的连线垂直并且平分这两个圆的的公共弦。如图:垂直平分。即:、相交于、两点 垂直平分十三、圆的公切线两圆公切线长的计算公式:(1)公切线长:中,;(2)外公切线长:是半径之差; 内公切线长:是半径之和 。十四、圆内正多边形的计算(1)正三角形 在中是正三角形,有关计算在中进行:;(2)正四边形同理,四边形的有关计算在中进行,:(3)正六边形同理,六边形的有关计算在中进行,.十五、扇形、圆柱和圆锥的相关计算公式1、扇形:(1)弧长公式:;(2)扇形面积公式: :圆心角 :扇形多对应的圆的半径 :扇形弧长 :扇形面积2012数学中考圆综合题1如图,ABC中,以BC为直径的圆交AB于点D,ACD=ABC(1)求证:CA是圆的切线;(2)若点E是BC上一点,已知BE=6,tanABC=,tanAEC=,求圆的直径2如图,已知AB是O的弦,OB2,B30,C是弦AB上的任意一点(不与点A、B重合),连接CO并延长CO交于O于点D,连接AD (1)弦长AB等于 (结果保留根号); (2)当D20时,求BOD的度数; (3)当AC的长度为多少时,以A、C、D为顶点的三角形与以B、C、O为顶点的三角形相似?请写出解答过程3. 如图右,已知直线PA交0于A、B两点,AE是0的直径点C为0上一点,且AC平分PAE,过C作CDPA,垂足为D。(1)求证:CD为0的切线;(2)若DC+DA=6,0的直径为l0,求AB的长度.1. (1)证明:连接OC,点C在0上,0A=OC,OCA=OAC,CDPA,CDA=90,有CAD+DCA=90,AC平分PAE,DAC=CAO。DC0=DCA+ACO=DCA+CAO=DCA+DAC=90。 又点C在O上,OC为0的半径,CD为0的切线(2)解:过0作0FAB,垂足为F,OCA=CDA=OFD=90,四边形OCDF为矩形,0C=FD,OF=CD.DC+DA=6,设AD=x,则OF=CD=6-x,O的直径为10,DF=OC=5,AF=5-x,在RtAOF中,由勾股定理得.即,化简得:解得或。由ADDF,知,故。从而AD=2, AF=5-2=3.OFAB,由垂径定理知,F为AB的中点,AB=2AF=6.4(已知四边形ABCD是边长为4的正方形,以AB为直径在正方形内作半圆,P是半圆上的动点(不与点A、B重合),连接PA、PB、PC、PD (1)如图,当PA的长度等于 时,PAB60; 当PA的长度等于 时,PAD是等腰三角形; (2)如图,以AB边所在直线为x轴、AD边所在直线为y轴,建立如图所示的直角坐标系(点A即为原点O),把PAD、PAB、PBC的面积分别记为S1、S2、S3坐标为(a,b),试求2 S1 S3S22的最大值,并求出此时a,b的值5.6.(11金华)如图,射线PG平分EPF,O为射线PG上一点,以O为圆心,10为半径作O,分别与EPF 的两边相交于A、B和C、D,连结OA,此时有OA/PE(1)求证:AP=AO;(2)若tanOPB=,求弦AB的长;PABCODEFG第21题图(3)若以图中已标明的点(即P、A、B、C、D、O)构造四边形,则能构成菱形的四个点为 ,能构成等腰梯形的四个点为 或 或 . (1)PG平分EPF,DPO=BPO , OA/PE,DPO=POA , BPO=POA,PA=OA; 2分(2)过点O作OHAB于点H,则AH=HB=AB,1分HPABCODEFG tanOPB=,PH=2OH, 1分设OH=,则PH=2,由(1)可知PA=OA= 10 ,AH=PHPA=210, , 1分解得(不合题意,舍去),AH=6, AB=2AH=12; 1分(3)P、A、O、C;A、B、D、C 或 P、A、O、D 或P、C、O、B.7(芜湖市)(本小题满分12分)如图,BD是O的直径,OAOB,M是劣弧上一点,过点M点作O的切线MP交OA的延长线于P点,MD与OA交于N点(1)求证:PMPN;(2)若BD4,PA AO,过点B作BCMP交O于C点,求BC的长8(黄冈市)(6分)如图,点P为ABC的内心,延长AP交ABC的外接圆于D,在AC延长线上有一点E,满足ADABAE,求证:DE是O的切线.(证明:连结DO,ADABAE,BADDAE,BADDAE,ADBE.又ADBACB,ACBE,BCDE,又ODBC,ODDE,故DE是O的切线)OBACEMD9(义乌市)如图,以线段为直径的交线段于点,点是的中点,交于点,(1)求的度数;(2)求证:BC是的切线; (3)求的长度(解:(1)BOE=60 A BOE 30 (2)在ABC中 C=601分 又A 30 ABC=902分 BC是的切线 (3)点M是的中点 OMAE在RtABC中 AB=6 OA= OD= MD=)10. (兰州市)(本题满分10分)如图,已知AB是O的直径,点C在O上,过点C的直线与AB的延长线交于点P,AC=PC,COB=2PCB. (1)求证:PC是O的切线; (2)求证:BC=AB; (3)点M是弧AB的中点,CM交AB于点N,若AB=4,求MNMC的值.解:(1)OA=OC,A=ACO COB=2A ,COB=2PCB A=ACO=PCB AB是O的直径 ACO+OCB=90 PCB+OCB=90,即OCCP OC是O的半径 PC是O的切线 (2)PC=AC A=P A=ACO=PCB=P COB=A+ACO,CBO=P+PCB CBO=COB BC=OC BC=AB (3)连接MA,MB 点M是弧AB的中点 弧AM=弧BM ACM=BCM ACM=ABM BCM=ABM BMC=BMN MBNMCB BM2=MCMN AB是O的直径,弧AM=弧BM AMB=90,AM=BM AB=4 BM= MCMN=BM2=8 11(本题满分14分)O2O1NMBA图(1)O2O1NMBA图(2)如图(1),两半径为的等圆和相交于两点,且过点过点作直线垂直于,分别交和于两点,连结(1)猜想点与有什么位置关系,并给出证明;(2)猜想的形状,并给出证明;(3)如图(2),若过的点所在的直线不垂直于,且点在点的两侧,那么(2)中的结论是否成立,若成立请给出证明4. (1)在上证明:过点,又的半径也是,点在上(2)是等边三角形 证明:,是的直径,是的直径,即,在上,在上 连结,则是的中位线,则是等边三角形 (3)仍然成立证明:由(2)得在中所对的圆周角为在中所对的圆周角为 当点在点的两侧时,在中所对的圆周角,在中所对的圆周角,是等边三角形 12如图12,已知:边长为1的圆内接正方形中,为边的中点,直线交圆于点(1)求弦的长(2)若是线段上一动点,当长为何值时,三角形与以为顶点的三角形相似BADEPC图121)如图1过点作于点在中,又的度数为 BADEPC5题图1FBADEPC5题图2QBADEPC5题图3(Q)(2)如图2当时有得:即点与点重合,如图3,当时,有得,即 当或时,三角形与以点为顶点的三角形相似 13.(本小题满分10分)如图,O是RtABC的外接圆,AB为直径,ABC=30,CD是O的切线,EDAB于F,第6题图ABDEOFC(1)判断DCE的形状;(2)设O的半径为1,且OF=,求证DCEOCB 6. 解:(1)ABC=30,BAC=60又OA=OC, AOC是正三角形又CD是切线,OCD=90,DCE=180-60-90=30而EDAB于F,CED=90-BAC=30故CDE为等腰三角形 (2)证明:在ABC中,AB=2,AC=AO=1,BC=OF=,AF=AO+OF=又AEF=30,AE=2AF=+1 CE=AE-AC=BC而OCB=ACB-ACO=90-60=30=ABC,故CDECOB.14(08湖北襄樊24题)8(本小题满分10分)如图14,直线经过上的点,并且,交直线于,连接(1)求证:直线是的切线;(2)试猜想三者之间的等量关系,并加以证明;(3)若,的半径为3,求的长(1)证明:如图3,连接 , 是的切线 (2) 是直径, 又, 又, (3), ,设,则 又, 解之,得, 15 如图14,直线经过上的点,并且,交直线于,连接(1)求证:直线是的切线;(2)试猜想三者之间的等量关系,并加以证明;(3)若,的半径为3,求的长4 解:(1)证明:如图3,连接 ,是的切线 (2) 是直径,又,又,(3),设,则又, 解之,得,5 O的半径OD经过弦AB(不是直径)的中点C,过AB的延长线上一点P作O的切线PE,E为切点,PEOD;延长直径AG交PE于点H;直线DG交OE于点F,交PE于点K(5题)(1)求证:四边形OCPE是矩形;(2)求证:HKHG; (3)若EF2,FO1,求KE的长5 解:(1)ACBC,AB不是直径,ODAB,PCO90(1分)PEOD,P90,PE是切线,PEO90,(2分)四边形OCPE是矩形.(3分)(2)OGOD,OGDODG.PEOD,KODG.(4分)OGDHGK,KHGK,HKHG.(5分)(3)EF2,OF1,EODO3.(6分)PEOD,KEODOE,KODG.OFDEFK,(7分)EFOFKEOD21,KE6.(8分)6题6 如图,直角坐标系中,已知两点O(0,0) A(2,0),点B在第一象限且OAB为正三角形,OAB的外接圆交轴的正半轴于点C,过点C的圆的切线交X轴于点D(1)求两点的坐标;(2)求直线的函数解析式;(3)设分别是线段上的两个动点,且平分四边形的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- mapjava面试题及答案
- 东北护士考试题及答案
- 2025年贵州毕节工业职业技术学院招聘考试笔试试题(含答案)
- 2025年广东省电工技师职业技能理论考试练习题库(含答案)
- 2024年山东临沂中考道德与法治试题及答案
- 资产评估师财务会计应收账款考试题(含答案)
- 数字化物流商业运营 习题答案-模块七
- 2024年医务人员查对制度考试题(含答案)
- (新版)消防设施操作员(初级)考试历年真题(含标准答案)
- 幼儿园教育指导纲要(试行)试题及答案
- SB/T 10460-2008商用电开水器
- GB/T 9124.1-2019钢制管法兰第1部分:PN系列
- GB/T 29414-2012散热器恒温控制阀
- 2023年黔西县(中小学、幼儿园)教师招聘考试《教育综合知识》题库及答案解析
- GA 1800.2-2021电力系统治安反恐防范要求第2部分:火力发电企业
- 运输供应商年度评价表
- PCB线路板基础知识课程课件
- 断亲协议书范本
- 口服化疗药精品课件
- 外科学课件-创伤总论
- 同安区中小学人工智能教育三年行动计(2022年—2024年)
评论
0/150
提交评论