

免费预览已结束,剩余14页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
玉溪一中20172018学年下学期高一年级期中考数学试卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知全集,集合,集合 ,则( )A. B. C. D. 【答案】A【解析】,所以,故选A.考点:集合的运算.视频2. 已知,且,则点坐标为( )A. B. C. D. 【答案】B【解析】分析:设出P点的坐标,根据要用的点的坐标写出两个向量的坐标,根据所给的关于向量的等式,得到两个方程,解方程组即可得到要求的点的坐标.详解:设P点的坐标为x,y, M(3,2),N(5,1),且MP=12MN, x3,y+2=1253,1+2 x=1,y=32.点P的坐标为1,32.故选:B.点睛:本题考查相等向量和相反向量,是一个基础题,解题的关键是写出要用的向量的坐标,根据两个向量相等,得到向量坐标之间的关系.3. 下列命题中,一定正确的是( )A. 若ab,且b0,则ab1 B. 若ab,且ab0,则1ab,且cd,则acbd D. 若ab,且cd,则a-db-c【答案】D【解析】【分析】利用特例法和不等式基本性质逐一判断即可.【详解】Aa0,b0时,ab1,因此不成立;Ba0,b0时,1a1b,因此不成立;C取a=5,b=3,c=1,d=6,满足ab,cd,则acbd,不正确;D若ab,且cd,则a+cb+d,即a-db-c,正确故选:D【点睛】本题考查了不等式的基本性质,考查了推理能力与计算能力,属于基础题4. 下列函数中,既是偶函数又在(0,+)单调递增的是( )A. y=x B. y=x3 C. y=cosx D. y=lnx【答案】D【解析】【分析】根据题意,依次分析选项中函数的奇偶性与单调性,即可得到答案【详解】根据题意,依次分析选项:对于A,y=x=x12,为幂函数,其定义域为x|x0,不是偶函数,不符合题意;对于B,y=x3,为幂函数,是奇函数,不符合题意;对于C,y=cosx,为偶函数,在(0,+)不是增函数,不符合题意;对于D,y=ln|x|=&lnx,x0&ln(-x),x0,为偶函数,且当x0时,y=lnx,为增函数,符合题意;故选:D【点睛】本题考查函数奇偶性与单调性的判定,关键是掌握常见函数的奇偶性与单调性5. 已知等差数列an前9项的和为27,a10=8,则a15=( )A. 11 B. 13 C. 15 D. 17【答案】B【解析】【分析】由等差数列an前9项的和为27,a10=8,列出方程组,求出a1=1,d=1,由此能求出a15【详解】等差数列an前9项的和为27,a10=8,&S9=9a1+982d=27&a10=a1+9d=8,解得a1=1,d=1,a15=a1+14d=1+14=13故选:B【点睛】本题主要考查等差数列的基本量的计算和通项公式及求和公式,意在考查学生对这些基础知识的掌握能力和基本的运算能力.6. tan2040=( )A. 33 B. 3 C. 33 D. 3【答案】D【解析】【分析】根据诱导公式转化求解即可【详解】tan2040=tan1980+60=tan60=3.故选:D【点睛】本题考查诱导公式的应用:求值此类题一般依照“负角化正角,大角化小角”的顺序进行角的转化7. 设an是无穷等差数列,公差为d,其前n项和为Sn,则下列说法正确的是( )A. 若a1d0,则Sn有最大值 B. 若a1d0,则Sn有最小值C. 若0a1a1a3 D. 若a10【答案】C【解析】【分析】利用等差数列的通项公式、前n项和公式的性质直接求解【详解】由设an是无穷等差数列,公差为d,其前n项和为Sn,知:在A中,若a1d0,则Sn没有最大值,故A错误;在B中,若a1d0,则Sn有最小值或最大值,故B错误;在C中,若0a1a2,则d=a2a10,a22=(a1+d)2=a12+2a1d+d2,a1a3=a1(a1+2d)=a12+2a1d,a2a1a3,故C正确;在D中,若a10,则(a2a1)(a2a3)=a22-a1a2-a2a3+a1a3=a12+2a1d+d2a12-a1da12-3a1d-2d2+a12+2a1d=d20,故D错误故选:C【点睛】本题考查命题真假的判断,考查等差数列的性质等基础知识,考查运算与求解能力,考查函数与方程思想,属于中档题8. 已知正数x,y满足4x+y=1,则1x+1y的最小值为( )A. 8 B. 9 C. 10 D. 12【答案】B【解析】【分析】由题意可得1x+1y=(1x+1y)(4x+y),再利用基本不等式即可求出最小值【详解】因为x,y都是正数,所以1x+1y=(1x+1y)(4x+y)=yx+4xy+52yx4xy+5=9,当且仅当y=2x=13时等号成立则1x+1y的最小值为9,故选:B【点睛】本题考查基本不等式的运用:求最值,注意运用乘“1”法和满足的条件:一正二定三等,考查运算能力,属于中档题9. 某三棱锥的三视图如下图所示,则该三棱锥的体积为( )A. 16 B. 13 C. 12 D. 1【答案】A【解析】试题分析:由图可得V=1312111=16,故选A.考点:三视图.【方法点晴】本题主要考查三视图和锥体的体积,计算量较大,属于中等题型.应注意把握三个视图的尺寸关系:主视图与俯视图长应对正(简称长对正),主视图与左视图高度保持平齐(简称高平齐),左视图与俯视图宽度应相等(简称宽相等),若不按顺序放置和不全时,则应注意三个视图名称.此外本题应注意掌握锥体的体积公式.视频10. 圆柱形容器的内壁底半径是10cm,有一个实心铁球浸没于容器的水中,若取出这个铁球,测得容器的水面下降了53cm,则这个铁球的表面积为( )A. 50cm2 B. 500cm2 C. 5003cm2 D. 100cm2【答案】D【解析】【分析】容器的水面下降部分的容积即为球的体积,由此计算出球的半径,再根据球的表面积公式即可求解【详解】设实心铁球的半径为R,则43R3=10253,解得R=5,故这个铁球的表面积为S=4R2=100cm2故选:D【点睛】本题考查球的表面积的求法,考查圆柱的体积和球的表面积、体积的计算等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,属于基础题11. ABC中,三个内角A,B,C的对边分别为a,b,c,若sinA,sinB,sinC成等差数列,且tanC=22 ,则ba= ( )A. 109 B. 149 C. 53 D. 32【答案】A【解析】【分析】根据同角三角函数基本关系,算出cosC=13再根据余弦定理c2=b2+a22abcosC的式子及2b=a+c,化简整理得到关于b、a的等式,解之即可得到ba的值【详解】tanC=220,得C为锐角cosC=11+tan2C=13sinA,sinB,sinC成等差数列,即2sinB=sinA+sinC根据正弦定理,得2b=a+c由余弦定理,得c2=b2+a22abcosC即2b-a2=b2+a2-23ab化简得9b2 =10ab,ba=109故选:A【点睛】对于余弦定理一定要熟记两种形式:(1)a2=b2+c22bccosA;(2)cosA=b2+c2a22bc.另外,在解与三角形、三角函数有关的问题时,还要记住30, 45, 60等特殊角的三角函数值,以便在解题中直接应用.12. ABC中,已知(ABAB+ACAC)BC=0,且ABABBCBC=22,则ABC是( )A. 三边互不相等的三角形 B. 等边三角形C. 等腰直角三角形 D. 顶角为钝角的等腰三角形【答案】C【解析】【分析】先根据(AB|AB|+AC|AC|)BC=0判断出A的角平分线与BC垂直,进而推断三角形为等腰三角形进而根据向量的数量积公式求得B,判断出三角形的形状【详解】(AB|AB|+AC|AC|)BC=0,AB|AB|,AC|AC|分别为单位向量,A的角平分线与BC垂直,AB=AC,cosB=ABABCBBC=22,B=4,B=C=A=3,三角形为等腰直角三角形故选:C【点睛】本题主要考查了平面向量的数量积的运算,三角形形状的判断考查了学生综合分析能力,属于中档题二、填空题:本大题共4小题,每小题5分.13. 已知f(x)=1-xx0x2x0,则f(f(-1)=_.【答案】4.【解析】【分析】利用分段函数,直接代入即可求值【详解】f(x)=x-1x0x2x0ff-1=f2=22=4故答案为:4【点睛】本题主要考查分段函数的应用,注意分段函数的定义区间,利用变量范围直接代入即可,属于基础题14. 函数y=f(x)的图象与函数g(x)=log2x的图象关于原点对称,则f(x)=_.【答案】f(x)= log2(x).【解析】【分析】先设函数f(x)上的点为(x,y),根据(x,y)关于原点的对称点为(x,y)且函数y=f(x)的图象与函数g(x)=log2x(x0)的图象关于原点对称,得到x与y的关系式,即得答案【详解】设(x,y)在函数f(x)的图象上(x,y)关于原点的对称点为(x,y),所以(x,y)在函数g(x)上y=log2(x)f(x)=log2(x)(x0)故答案为:f(x)= -log2(-x)【点睛】本题主要考查对称的性质和对数的相关性质,比较简单,但是容易把f(x)=1log2(-x)(x0)与f(x)=log2(x)(x0)搞混,其实f(x)=-log2(-x)=log21-x15. ABC中,BAC=135,AC=3,且ABC的面积为6,则AB边上的高为_.【答案】62.【解析】【分析】运用三角形的面积公式S=12ABACsinBAC,解方程可得AB,设AB边上的高为h,由124h=6,可得所求高【详解】ABC中,BAC=135,AC=3,且ABC的面积为6,可得12ABACsinBAC=12AB322=6,解得AB=4,设AB边上的高为h,则124h=6,可得h=62,故答案为:62【点睛】本题考查三角形的面积公式的运用,考查方程思想和运算能力,属于基础题16. 已知数列an的通项公式是an=(2n+1)(910)n,nN*,则an中的最大项的序号是_.【答案】9.【解析】【分析】利用作差法明确项的变化趋势从而得到最大项的序号.【详解】令an+1an=(2n+3)(910)n+1(2n+1)(910)n=(910)n9(2n+3)10-(2n+1)=(910)n17-2n100可得n8.5即a1a2a8a10an中的最大项的序号是9故答案为:9【点睛】解决数列的单调性问题可用以下三种方法用作差比较法,根据an+1-an的符号判断数列an是递增数列、递减数列或是常数列.用作商比较法,根据an+1an与1的大小关系及an符号进行判断.结合相应函数的图像直观判断,注意自变量取值为正整数这一特殊条件三、解答题:解答应写出文字说明,证明过程或演算步骤.17. (1)解不等式log2(2x+3)1;(2)解关于x的不等式x2ax0.【答案】(1) (32,12);(2)若a=0,原不等式的解集为;若a0,原不等式的解集为(0,a).【解析】【分析】(1)根据题意,圆不等式变形可得02x+32,解可得x的取值范围,即可得答案;(2)根据题意,求出方程x2ax=0的两个根,结合二次函数的性质讨论两个根的大小,分析可得答案【详解】(1) log2(2x+3)log22,所以02x+32, 即-32x-12,解集为(-32,-12)(2)方程x2-ax=0可化为x(x-a)=0,其两根为0和. 若a=0,原不等式的解集为; 若a0,原不等式的解集为(0,a).【点睛】解含参数的一元二次不等式,要把握好分类讨论的层次,一般按下面次序进行讨论:首先根据二次项系数的符号进行分类,其次根据根是否存在,即判别式的符号进行分类,最后当根存在时,再根据根的大小进行分类18. 设数列an是公比为2的等比数列,且a4+1是a1与a5的等差中项.(1)求数列an的通项公式;(2)记数列1an的前n项和为Sn,求使得|Sn1|12020成立的n的最小值.【答案】(1)an=2n.(2)11.【解析】【分析】(1)由题意可得2(a4+1)=a1+a5 易得a1 ,从而得到数列an的通项公式;(2) 由(1)知1an为等比数列,首项为12,公比为12 ,故Sn=1-12n,|Sn-1|2020,估值即可.【详解】(1)由a4+1是a1与a5的等差中项可得2(a4+1)=a1+a5,所以2(8a1+1)=a1+16a1 解得a1=2.故an=2n (2)由(1)得1an=12n 1an为等比数列,首项为12,公比为12 所以Sn=121-(12)n1-12=1-12n由|Sn-1|12020,得|1-12n-1|2020 因为210=102420202048=211, 所以n11. 于是,使|Sn-1|12020成立的n的最小值为11.【点睛】等比数列的基本量运算问题的常见类型及解题策略:化基本量求通项求等比数列的两个基本元素a1和q,通项便可求出,或利用知三求二,用方程求解化基本量求特定项利用通项公式或者等比数列的性质求解化基本量求公比利用等比数列的定义和性质,建立方程组求解化基本量求和直接将基本量代入前n项和公式求解或利用等比数列的性质求解19. 已知a,b,c分别为ABC三个内角A,B,C的对边,2bcosA=acosC+ccosA.(1)求A;(2)若b+c=2,求的取值范围.【答案】(1) A=3.(2) 1,2).【解析】【分析】(1)由2bcosA=acosC+ccosA,利用正弦定理可得2sinBcosA=sinB又sinB0,化简即可得出;(2)由余弦定理可得:以4-a2=3bc,因为bc(b+c2)2=1,4-a23即可得出【详解】(1)由正弦定理可得:2sinBcosA=sinAcosC+sinCcosA=sin(A+C)=sinB , B(0,),sinB0,所以2cosA=1,即cosA=12,因为A(0,),所以A=3(2)cosA=b2+c2-a22bc=(b+c)2-2bc-a22bc=4-2bc-a22bc=12, 所以4-a2=3bc,因为bc(b+c2)2=1(当且仅当b=c=1时取等号),所以4-a23,解得a1,又因为a0,0)的性质(1) ymax=A+B,ymin=AB.(2)周期T=2.(3)由 x+=2+kkZ求对称轴(4)由2+2kx+2+2kkZ求增区间;由2+2kx+32+2kkZ求减区间.21. 设数列an的前n项和为Sn,已知a1=1,an+1=2Sn+1 (nN*).(1)证明:数列an是等比数列;(2)设bn=1log3a2nlog3a2n+2,求数列bn的前n项和Tn.【答案】(1)见解析.(2) n2n+1.【解析】【分析】(1)an+1=2Sn+1(nN*),an=2Sn1+1(n2),利用递推可得an+1an=3(n2),可得an从第二项起是等比数列,又因为a1=1,a2=2a1+1=3,可得a2a1=3,即可证明结论(2)由(1)可知:an是首项为1,公比为3的等比数列,所以an=3n-1,bn=1log332n-1log332n+1=1(2n-1)(2n+1)=12(12n-1-12n+1),利用裂项求和方法即可得出【详解】(1)an+1=2Sn+1 (nN*) an=2Sn-1+1 (n2) 当n2时,可得an+!-an=2(Sn-Sn-1)=2an,化简得an+1an=3(n2), 所以an从第二项起是等比数列. .4分 又因为a1=1,a2=2a1+1=3, 所以a2a1=3,从而an+1an=3(nN*),所以数列an是等比数列(2)由(1)可知:an是首项为1,公比为3的等比数列,所以an=3n-1, bn=1log332n-1log332n+1=1(2n-1)(2n+1)=12(12n-1-12n+1) , Tn=b1+b2+.+bn=12(11-13)+(13-15)+.+(12n-1-12n+1) =12(1-12n+1)=n2n+1.【点睛】裂项相消法是最难把握的求和方法之一,其原因是有时很难找到裂项的方向,突破这一难点的方法是根据式子的结构特点,常见的裂项技巧:(1)1nn+k=1k1n-1n+k;(2) 1n+k+n =1kn+k-n; (3)12n-12n+1=1212n-1-12n+1;(4)1nn+1n+2=12 1nn+1-1n+1n+2;此外,需注意裂项之后相消的过
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 概括承受三方合同2篇
- 商品入仓库服务合同4篇
- 新解读《GB-T 31048-2014铜冷却壁》
- 草鱼收购合同6篇
- 合同范本印章怎么盖
- 食品供应协议合同范本
- 药厂木香采购合同范本
- 卫生院尘肺病康复站差错事故预防及突发事件处理制度
- 供电监理合同范本
- 关于教育孩子的心得体会和感悟五篇
- 静配中心细胞毒性药物的配置方法
- 短视频制作实战课件
- 面试礼仪与求职技巧讲义
- 严重创伤的急诊管理课件
- 江西省普通高中学生综合素质评价手册
- 急性阑尾炎【普外科】-课件
- 文化人类学课件完整版
- 四年级语文下册课外阅读《青铜葵花》导读课 课件(共24张PPT)
- 《Section B 1a-1e》获奖教案初中英语九年级全一册-九年级英语教案
- 中医儿科学 手足口病
- GB/T 14842-2007铌及铌合金棒材
评论
0/150
提交评论