

已阅读5页,还剩15页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
四川省成都外国语2018-2019学年高二数学5月月考试题 文(含解析)一.选择题(在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案集中填写在答题卷上.)1.已知集合,则( )A. B. C. D. 【答案】A【解析】【分析】先化简集合,求出,再和集合求交集,即可得出结果.【详解】因为,所以,又,所以.故选A【点睛】本题主要考查集合的混合运算,熟记概念即可,属于基础题型.2.设,则( )A. 2B. 3C. 4D. 5【答案】B【解析】分析】利用复数的除法运算求出,进而可得到.【详解】,则,故,选B.【点睛】本题考查了复数的四则运算,考查了复数的模,属于基础题。3.已知向量,若,则( )A. B. 1C. 2D. 【答案】B【解析】【分析】由,表示出,再由,即可得出结果.【详解】因为,所以,又,所以,即,解得.故选B【点睛】本题主要考查向量数量积的坐标运算,熟记运算法则即可,属于基础题型.4.设等差数列前项和为,若,则( )A. 20B. 23C. 24D. 28【答案】D【解析】【分析】将已知条件转化为的形式,列方程组,解方程组求得的值,进而求得的值.【详解】由于数列是等差数列,故,解得,故.故选D.【点睛】本小题主要考查利用基本元的思想求等差数列的基本量、通项公式和前项和.基本元的思想是在等差数列中有个基本量,利用等差数列的通项公式或前项和公式,结合已知条件列出方程组,通过解方程组即可求得数列,进而求得数列其它的一些量的值.5.为了解户籍、性别对生育二胎选择倾向的影响,某地从育龄人群中随机抽取了容量为200的调查样本,其中城镇户籍与农村户籍各100人;男性120人,女性80人,绘制不同群体中倾向选择生育二胎与倾向选择不生育二胎的人数比例图,如图所示,其中阴影部分表示倾向选择生育二胎的对应比例,则下列叙述中错误的是( ) A. 是否倾向选择生育二胎与户籍有关B. 是否倾向选择生育二胎与性别有关C. 倾向选择生育二胎的人群中,男性人数与女性人数相同D. 倾向选择不生育二胎的人群中,农村户籍人数少于城镇户籍人数【答案】C【解析】【分析】由题意,通过阅读理解、识图,将数据进行比对,通过计算可得出C选项错误【详解】由比例图可知,是否倾向选择生育二胎与户籍、性别有关,倾向选择不生育二胎的人员中,农村户籍人数少于城镇户籍人数,倾向选择生育二胎的人员中,男性人数为人,女性人数为人,男性人数与女性人数不相同,故C错误,故选:C【点睛】本题主要考查了条形图的实际应用,其中解答中认真审题,正确理解条形图所表达的含义是解答的关键,着重考查了阅读理解能力、识图能力,属于基础题.6.“”是“方程表示焦点在轴上的双曲线”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】B【解析】分析】解得方程表示焦点在轴上的双曲线的m的范围即可解答.【详解】表示焦点在轴上的双曲线,解得1m5,故选:B.【点睛】本题考查双曲线的方程,是基础题,易错点是不注意7.已知,则( )A. B. C. D. 【答案】C【解析】【分析】由已知根据三角函数的诱导公式,求得,再由余弦二倍角,即可求解【详解】由,得,又由故选:C【点睛】本题主要考查了本题考查三角函数的化简求值,其中解答中熟记三角函数的诱导公式及余弦二倍角公式的应用是解答的关键,着重考查了推理与计算能力,属于基础题8.已知,则,的大小关系是( )A. B. C. D. 【答案】B【解析】【分析】结合0,1进行a,b,c的大小比较,即可。【详解】,故,故选B.【点睛】本道题考查了对数、指数比较大小,关键可以结合0,1进行大小比较,难度中等。9.如图,框图的功能是求满足的最小正整数,则空白处应填入的是( )A. 输出B. 输出C. 输出D. 输出【答案】D【解析】【分析】根据框图,写出每一次循环的结果,进而做出判断.【详解】根据程序框图得到循环是: M= 之后进入判断,不符合题意时,输出,输出的是i-2.故答案为:D.【点睛】这个题目考查了循环结构的程序框图,这种题目一般是依次写出每一次循环的结果,直到不满足或者满足判断框的条件为止.10.在三棱锥中,平面平面,是边长为的等边三角形,则该三棱锥外接球的表面积为( )A. B. C. D. 【答案】A【解析】【分析】由题意,求得所以外接圆的半径为,且,所以,又由平面平面,得平面,且,进而利用在直角中,由正弦定理求得求得半径,利用球的表面积公式,即可求解.【详解】由题意,如图所示,因为是边长为的等边三角形,所以外接圆的半径为,且,所以,又由平面平面,在等腰中,可得平面,且,在直角中,,且,在直角中,,在直角中,由正弦定理得,即球的半径为,所以球的表面积为,故选A.【点睛】本题考查了有关球的组合体问题,以及球的表面积的计算问题,解答时要认真审题,正确认识组合体的结构特征,注意组合体的性质的合理运用,合理求解球的半径是解答的关键,着重考查了空间想象能力,以及推理与运算能力,属于中档试题.11.设,分别是椭圆的左、右焦点,若在直线(其中)上存在点,使线段的垂直平分线经过点,则椭圆离心率的取值范围是( )A. B. C. D. 【答案】C【解析】【分析】由题意得 , ,设点,由中点公式可得线段的中点 ,可得线段的斜率与的斜率之积等于,可得,可得e的范围.【详解】解:由题意得 , ,设点,则由中点公式可得线段的中点 ,线段的斜率与的斜率之积等于,即,或舍去,又椭圆的离心率 ,故,故选:C【点睛】本题主要考查椭圆的离心率的相关问题,根据题意列出不等式是解题的关键.12.若对于函数图象上任意一点处的切线,在函数的图象上总存在一条切线,使得,则实数的取值范围为( )A. B. C. D. 【答案】A【解析】【分析】求得f(x)的导数,可得切线l1的斜率k1,求得g(x)的导数,可得切线l2的斜率k2,运用两直线垂直的条件:斜率之积为1,结合正弦函数的值域和条件可得,x1,x2使得等式成立,即(,0)1|a|,1|a|,解得a的范围即可【详解】解:函数f(x)1n(x+1)+x2,f(x)2x,( 其中x1), 函数g(x)asincosxasinxx,g(x)acosx1;要使过曲线f(x)上任意一点的切线为l1,总存在过曲线g(x)上一点处的切线l2,使得l1l2,则2x1)(acosx21)1,acosx21,2x12(x1+1)222x1,x2使得等式成立,(,0)1|a|,1|a|,解得|a|,即a的取值范围为a或a故选:A【点睛】本题考查导数的应用:求切线的斜率,考查两直线垂直的条件:斜率之积为1,以及转化思想的运用,区间的包含关系,考查运算能力,属于中档题二.填空题(请把答案填写在答题卷上.)13.在中,角,的对边分别为,若,且,则_【答案】【解析】【分析】首先利用正弦定理边化角,然后结合大边对大角确定的值即可.【详解】由结合正弦定理可得:,故,由可得,故为锐角,则故答案为:【点睛】本题主要考查正弦定理的应用,特殊角的三角函数值等知识,意在考查学生的转化能力和计算求解能力.14.已知为奇函数,当时,则_【答案】【解析】【分析】根据函数为奇函数,可得,结合题中所给解析式,即可求出结果.【详解】因为为奇函数,所以,又当时,所以.故答案为【点睛】本题主要考查函数奇偶性的应用,熟记函数奇偶性即可,属于基础题型.15.在平面直角坐标系中,已知圆:与轴交于,两点,若动直线与圆相交于,两点,且的面积为4,若为的中点,则的面积最大值为_【答案】8【解析】【分析】根据题意求出点A、B的坐标,然后根据CMN的面积为4求得MN的长以及高PD的长,再利用面积公式,求得结果.【详解】当y=0时,解得x=-1或x=3,即A(-1,0),B(3,0)圆的标准方程: 圆心C(1,2)半径r= CMN的面积为4即 则,即 要使PAB的面积最大,则 此时三角形的高PD=2+2=4,AB=3-(-1)=4则PAB的面积 故答案为8【点睛】本题主要考查了直线与圆的位置关系,以及面积公式等综合知识,解题的关键是在于能否知道直线与圆的相交关系,属于中档题.16.已知定义在上的可导函数,对于任意实数都有,且当时,都有,若,则实数的取值范围为_【答案】【解析】【分析】令,则,得在上单调递减,且关于对称,在上也单调递减,又由,可得,则,即,即可求解.【详解】由题意,知,可得关于对称,令,则,因为,可得在上单调递减,且关于对称,则在上也单调递减,又因为,可得,则,即,解得,即实数的取值范围是.【点睛】本题主要考查了函数性质的综合应用,以及不等关系式的求解,其中解答中令函数,利用导数求得函数的单调性和对称性质求解不等式是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题.三.解答题(解答应写出文字说明,证明过程或验算步骤.请将解答过程写在答题卷相应题号的下面.)17.在直角坐标系中,曲线的参数方程为(为参数),以坐标原点为极点,轴正半轴为极轴建立极坐标系,直线的极坐标方程为(1)求直线与曲线公共点的极坐标;(2)设过点的直线交曲线于,两点,且的中点为,求直线的斜率【答案】(1) 直线与曲线公共点的极坐标为, (2)-1【解析】【分析】(1)写出直线l和曲线的直角坐标方程,然后联立求交点坐标,化成极坐标即可;(2)写出直线的参数方程代入曲线中,利用弦中点参数的几何意义即可求解.【详解】(1)曲线的普通方程为,直线的普通方程为联立方程,解得或所以,直线与曲线公共点的极坐标为,(2)依题意,设直线的参数方程为(为倾斜角,为参数),代入,整理得:.因为的中点为,则.所以,即.直线的斜率为-1.【点睛】本题考查直线和圆的参数方程,考查参数的几何意义的应用,属于基础题型.18.已知函数(1)求的单调减区间(2)若在区间上的最大值为,求它在该区间上的最小值.【答案】(1) (,1),(3,)(2)-7【解析】试题分析:()先求出函数f(x)的导函数f(x),然后令f(x)0,解得的区间即为函数f(x)的单调递减区间;()先求出端点的函数值f(2)与f(2),比较f(2)与f(2)的大小,然后根据函数f(x)在1,2上单调递增,在2,1上单调递减,得到f(2)和f(1)分别是f(x)在区间2,2上的最大值和最小值,建立等式关系求出a,从而求出函数f(x)在区间2,2上的最小值解:()f(x)=3x2+6x+9令f(x)0,解得x1或x3,所以函数f(x)的单调递减区间为(,1),(3,+)()因为f(2)=8+1218+a=2+a,f(2)=8+12+18+a=22+a,所以f(2)f(2)因为在(1,3)上f(x)0,所以f(x)在1,2上单调递增,又由于f(x)在2,1上单调递减,因此f(2)和f(1)分别是f(x)在区间2,2上的最大值和最小值,于是有22+a=20,解得a=2故f(x)=x3+3x2+9x2,因此f(1)=1+392=7,即函数f(x)在区间2,2上的最小值为7点评:本题主要考查导函数的正负与原函数的单调性之间的关系,即当导函数大于0时原函数单调递增,当导函数小于0时原函数单调递减以及在闭区间上的最值问题等基础知识,同时考查了分析与解决问题的综合能力19.詹姆斯哈登(James Harden)是美国NBA当红球星,自2012年10月加盟休斯顿火箭队以来,逐渐成长为球队的领袖2017-18赛季哈登当选常规赛MVP(最有价值球员)年份2012-132013-142014-152015-162016-172017-18年份代码t123456常规赛场均得分y25.925.427.429.029.130.4()根据表中数据,求y关于t的线性回归方程(,*);()根据线性回归方程预测哈登在2019-20赛季常规赛场均得分【附】对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为:, (参考数据,计算结果保留小数点后一位)【答案】().(,) ()32.4【解析】【分析】()求得样本中心点,利用最小二乘法即可求得线性回归方程;()由()可知:将代入线性回归方程,即可预测哈登在2019-20赛季常规赛场均得分【详解】(1)由题意可知:, ,又,y关于t的线性回归方程为.(,)(2)由(1)可得,年份代码, 此时,所以,可预测哈登在2019-20赛季常规赛场均得分为32.4.【点睛】本题考查利用最小二乘法求线性回归方程及线性回归方程的应用,考查转化思想,属于中档题20.如图,四棱锥中,是正三角形,四边形是菱形,点是的中点(1)求证:平面;(2)若平面平面,求三棱锥的体积.【答案】(I)证明见解析;(II).【解析】【分析】(I)利用中位线,在平面内找到一条直线和平行,由此证得线面平行.(II)作出到平面的高,并求出高,并由计算出三棱锥的体积.【详解】(I)连接,设,连接.因为四边形是菱形,所以点是的中点.又因为是的中点,所以是三角形的中位线,所以,又因为平面,平面,所以平面.(II)因为四边形是菱形,且,所以.又因为,所以三角形是正三角形.取的中点,连接,则.又平面平面,平面,平面平面,所以平面.在等边三角形中,.而的面积.所以.【点睛】本小题主要考查线面平行的证明,考查三棱锥体积的求法,考查线面垂直
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年体检行业市场竞争格局与服务质量优化策略报告
- 药品购销合同管理制度
- 药学志愿服务管理制度
- 药店员工工具管理制度
- 药店管理货物管理制度
- 菜鸟公司员工管理制度
- 设备仓库门禁管理制度
- 设备备件分级管理制度
- 设备建设安全管理制度
- 设备校准标签管理制度
- (正式版)CB∕T 4548-2024 船舶行业企业相关方安全管理要求
- 北师大版中考数学考试大纲
- 大学俄语一级课程考试试卷 (A 卷)
- 升降桩施工合同
- 物业管理与体育场馆
- 2023-2024学年成都市金牛区八年级下英语期末考试题(含答案)
- 广东省珠海市香洲区2022-2023学年四年级下学期期末英语试题
- JT-T-760-2009浮标技术条件
- JT-T-795-2011事故汽车修复技术规范
- JBT 10437-2024 电线电缆用可交联聚乙烯绝缘料(正式版)
- 初中数学教育教学案例(3篇模板)
评论
0/150
提交评论