


全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
乘法公式完全平方公式教学目标:完全平方公式的推导及其应用;完全平方公式的几何解释;视学生对算理的理解,有意识地培养学生的思维条理性和表达能力教学重点与难点:完全平方公式的推导过程、结构特点、几何解释,灵活应用.教学过程:一、提出问题,学生自学问题:根据乘方的定义,我们知道:a2=aa,那么(a+b)2 应该写成什么样的形式呢?(a+b)2的运算结果有什么规律?计算下列各式,你能发现什么规律?(1)(p+1)2 = (p+1)(p+1) = _; (m+2)2 = _;(2)(p1)2 = (p1)(p1) = _; (m2)2 = _;学生讨论,教师归纳,得出结果:(1) (p+1)2 = (p+1)(p+1) = p2+2p+1 (m+2)2 = (m+2)(m+2) = m2+ 4m+4(2) (p1)2 = (p1)(p1) = p22p+1 (m2)2 = (m2)(m2) = m2 4m+4分析推广:结果中有两个数的平方和,而2p=2p1,4m=2m2,恰好是两个数乘积的二倍(1)(2)之间只差一个符号推广:计算(a+b)2 = _;(ab)2 = _. 得到公式,分析公式结论: (a+b)2=a2+2ab+b2 (ab)2=a22ab+b2 即:两数和(或差)的平方,等于它们的平方和,加(或减)它们的积的2倍二、几何分析:你能根据图(1)和图(2)的面积说明完全平方公式吗?图(1)大正方形的边长为(a+b),面积就是(a+b)2,同时,大正方形可以分成图中四个部分,它们分别的面积为a2、ab、ab、b2,因此,整个面积为a2+ab+ab+b2 = a2+2ab+b2,即说明(a+b)2 = a2+2ab+b2.类似地可由图(2)说明(ab)2 = a22ab+b2.三、例题:例1应用完全平方公式计算:(1)( 4m+n)2 (2)(y)2 (3)(ab)2 (4)(ba)2解答:(1)( 4m+n)2 = 16m2+8mn+n2(2) (y)2 = y2y+(3) (ab)2 = a2+2ab+b2(4) (ba)2 = b22ba+a2例2运用完全平方公式计算:(1)1022 (2)992解答:(1)1022 = (100+2)2 = 10000+400+4 = 10404(2)992 = (1001)2 = 10000200+1 = 9801四、添括号法则在公式里的运用问题:在运用公式的时候,有些时候我们需要把一个多项式看作一个整体,把另外一个多项式看作另外一个整体,例如:(a+b+c)(ab+c)和(a+b+c)2,这就需要在式子里添加括号;那么如何加括号呢?它有什么法则呢?它与去括号有何关系呢?学生回顾去括号法则,在去括号时:a+(b+c) = a+b+c,a(b+c) = abc反过来,就得到了添括号法则:a+b+c = a+(b+c),abc = a(b+c)理解法则:如果括号前面是正号,括到括号里的各项都不变符号;如果括号前面是负号,括到括号里的各项都改变符号也是:遇“加”不变,遇“减”都变总结:添括号法则是去括号法则反过来得到的,无论是添括号,还是去括号,运算前后代数式的值都保持不变,所以我们可以用去括号法则验证所添括号后的代数式是否正确五、小结:1完全平方公式的结构特征:公式的左边是一个二项式的完全平方;右边是三项,其中有两项是左边二项式中每一项的平方,而另一项是左边二项式中两项乘积的2倍2添括号法则:如果括号前面是正号,括到
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 园艺主题酒店创新创业项目商业计划书
- 农产品期货交易咨询创新创业项目商业计划书
- 动物皮毛艺术品制作创新创业项目商业计划书
- 农产鲜品乐创新创业项目商业计划书
- 现场急救知识培训包扎课件
- 2025年教育行业数字化教材开发与多语言支持策略研究
- 2025年新能源汽车废旧电池回收利用产业链技术创新与产业竞争力研究报告
- 2025年城市轨道交通智慧运维系统在智慧城市建设中的关键作用报告
- 河南省三门峡市陕州区2022-2023学年大象版五年级上学期科学期中考试试题(含答案)
- 2026届云南省永德县第一中学化学高一第一学期期末学业质量监测模拟试题含解析
- 社区公共卫生护理考核试卷
- 现代海洋管理 知到智慧树网课答案
- 新疆维吾尔自治区五大名校2024年高考化学必刷试卷含解析
- GB/T 43680-2024生态系统评估陆地生态退化评估方法
- 应急救援基础知识
- 无人机实训室建设方案
- TGSC 006-2024 二氧化碳陆地封存工程选址指南
- 销售目标达成计划
- 食材验收标准培训课件
- 畜禽养殖知识讲座
- 高速公路收费员培训课件
评论
0/150
提交评论