




已阅读5页,还剩9页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
正方形,授课人:白丽君,想一想,矩形,正方形,矩形怎样变化后就成了正方形呢?,探究(一),菱形怎样变化后就成了正方形呢?,正方形,探究小结,矩形,正方形,邻边,相等,发现:一组邻边相等的矩形叫正方形,一个角,是直角,正方形,发现:一个角为直角的菱形叫正方形,正方形定义,有一组邻边相等并且有一个角是直角的平行四边形是正方形,拓展讨论,讨论总结:正方形有那些性质?,A,C,D,B,A,C,D,B,A,C,D,B,O,对边平行,四条边都相等,四个角都是直角,对角线互相垂直平分且相等,每条对角线平分一组对角,四边形ABCD是正方形ABCDADBC,AB=BC=CD=AD,四边形ABCD是正方形A=B=C=D=90,四边形ABCD是正方形ACBD,AC=BD,OA=OB=OC=OD,轴对称图形中心对称图形,知识拓展:与同学讨论后填写下表:,几种特殊四边形的性质,对边平行且相等,对边平行且相等,对边平行,四边都相等,对边平行,四条边都相等,对角相等,邻角互补,四个角都是直角,对角相等,邻角互补,四个角都是直角,对角线互相平分,对角线相等且互相平分,对角线互相垂直平分,每条对角线平分一组对角,对角线互相垂直平分且相等,每条对角线平分一组对角,中心对称图形,轴对称图形、中心对称图形,轴对称图形、中心对称图形,轴对称图形、中心对称图形,平行四边形,矩形,菱形,正方形,正方形、菱形、矩形、平行四边形四者之间有什么关系?,例,求证:正方形的两条对角线把这个正方形分成四个全等的等腰直角三角形.,这是一道文字证明题,该怎么做?你会做吗?,第一步:根据题意画出图形第二步:写出已知、求证第三步:进行证明,A,D,C,B,O,已知:如图,四边形ABCD是正方形,对角线AC、BD相交于点O.,求证:ABO、BCO、CDO、DAO是全等的等腰直角三角形.,证明:四边形ABCD是正方形,AC=BD,ACBD,AO=BO=CO=DO.ABO、BCO、CDO、DAO都是等腰直角三角形,并且ABOBCOCDODAO,分析:利用正方形的性质,对角线互相垂直平分且相等,每条对角线平分一组对角.平分可以产生线段等量关系,垂直可以产生直角,于是可以得到四个全等的等腰直角三角形.,A,D,C,B,O,正方形对角线把正方形分成多少个等腰直角三角形?,拓展讨论:,结论:分成八个等腰直角三角形,分别是ABC、ADC、ABD、BCD;AOB、BOC、COD、DOA.,P101练习1、2,练习1提示:有一组邻边相等的矩形是正方形,A,B,D,C,E,F,正方形,裁,A,D,C,B,E,练习2提示:寻找直角三角形,运用直角三角形求边长和对角线.,小结,1、正方形定义,有一组邻边相等并且有一个角是直角的平行四边形是正方形,2、正方形有那些性质,对边平行,四条边都相等,四个角都是直角,对角线互相垂直平分且相等,每条对角线平分一组对角,边:,角:,对角线:,作业,习题19.2第7、8题,补充习题:1、已知正方形ABCD的边长为4,E为BC边上一点,且BE=1,P为AC上一点
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 安徽省阜阳市太和县2024-2025学年九年级上学期10月月考物理试卷(含答案)
- 拍摄视频采购合同范本
- 养鱼设备租赁合同范本
- 土地同意转租合同范本
- 承包土地售卖合同范本
- 网络平台经销合同范本
- 法律规定合同范本
- 大型货车货运合同范本
- 企业定制珠宝合同范本
- 绿化草坪的合同范本
- DB5132∕T 76-2022 熊猫级民宿的划分与评定
- 湛江市语文新初一分班试卷含答案
- 2025年度医院医德医风考评表格
- 2025年慢病管理项目商业计划书及运营管理方案
- 2025年互联网营销师-直播销售员竞赛考试题库及答案
- 【0110】2024年年度泉州市场分析正式版
- 高空作业安全隐患识别与防范措施
- 智慧消防项目可行性研究报告
- 急危重症病人的安全转运
- 老旧小区环境整治工程扬尘治理专项施工方案
- 湖南省社保知识培训课件
评论
0/150
提交评论