

免费预览已结束,剩余6页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2018-2019学年广东省汕头市金山中学高二上学期期中考试数学此卷只装订不密封班级 姓名 准考证号 考场号 座位号 注意事项:1答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。2选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。3非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。写在试题卷、草稿纸和答题卡上的非答题区域均无效。4考试结束后,请将本试题卷和答题卡一并上交。一、单选题1设S=x|2x+10,T=x|3x-50,则ST=A Bx|x53 Dx|-12xb0)的左右焦点分别为F1,F2,点P在椭圆上,PF2x轴,且PF1F2是等腰直角三角形,则该椭圆的离心率为A22 B212 C22 D219如图,在等腰梯形ABCD中,AB=2DC=2,DAB=60,E为AB中点.将ADE与BEC分别沿ED、EC折起,使A、B重合于点P,则三棱锥P-DCE的外接球的体积为A4327 B62 C68 D62410某三棱锥的三视图如图所示,则该三棱锥的各个面中,最大的面积是A62 B22 C1 D6411已知方程k(x-2)+3=4-x2有两个不同的实数解,则实数k的取值范围是A(512,34) B(512,1 C(512,34 D(0,3412已知点P(1,1)及圆C:x2+y2=4,点M,N在圆C上,若PMPN,则|MN|的取值范围为A6-2,6+2 B2-2,2+2C6-2,6+3 D2-2,2+3二、填空题13已知向量a(4,2),向量b(x,3),且a/b,则x _14已知正三棱锥SABC的侧棱长为2,底面边长为1,则侧棱SA与底面ABC所成角的余弦值等于_15菱形ABCD的边长为2,且BAD60,将三角形ABD沿BD折起,得到三棱锥ABCD,则三棱锥ABCD体积的最大值为_16函数y=11-x的图像与函数y=2sinx(-4x6)的图像所有交点的横坐标之和等于_三、解答题17已知A、B、C是ABC的内角,a,b,c分别是角A,B,C的对边。若sin2A+sin2B-sin2C=sinAsinB()求角C的大小;()若c=2,求ABC面积的最大值18如图,三棱柱ABCA1B1C1中,CACB,ABAA1,BAA160.O为AB的中点(1)证明:AB平面A1OC(2)若ABCB2,平面ABC平面A1ABB1,求三棱柱ABCA1B1C1的体积19在数列中, (I)设,求数列的通项公式(II)求数列的前项和20已知过点A(0,4),且斜率为k的直线与圆C:(x-2)2+(y-3)2=1,相交于不同两点M、N.(1)求实数k的取值范围; (2)求证:AMAN为定值;(3)若O为坐标原点,问是否存在以MN为直径的圆恰过点O,若存在则求k的值,若不存在,说明理由。21已知函数f(x)=x|2a-x|+2x,aR(1)若函数f(x)在R上是增函数,求实数a的取值范围;(2)若存在实数a-2,2,使得关于x的方程f(x)-tf(2a)=0有三个不相等的实数根,求实数t的取值范围12018-2019学年广东省汕头市金山中学高二上学期期中考试 数学数学 答 案参考答案1D【解析】【分析】集合S,T是一次不等式的解集,分别求出再求交集即可【详解】S=x|2x+10=xx-12,T=x|3x-50=xx53,则ST=x|-12x53故选D【点睛】本题主要考查了一次不等式的解集以及集合的交集运算,属于基础题。2C【解析】命题m,n 结果可能异面,故错误;命题结果可能n ,故错误;命题显然正确;命题m/n,mn/n ,故正确;综上正确命题为,故选C.【点睛】本题主要考查线面垂直的判定与性质、线面平行的性质和面面平行的性质等知识,涉及数形结合思想和分类与整合思想,并考查空间想象能力和逻辑推理能力,属于中档题型.解决此种主要采取特例法和排除法,例如:命题m,n 结果可能异面,故错误;命题结果可能n ,故错误.3B【解析】【分析】焦点三角形的周长为2a+2c,由此计算得选项.【详解】焦点三角形的周长为2a+2c,依题意a=5,b=3,c=4,故周长为2a+2c=10+8=18,所以选B.【点睛】本小题主要考查椭圆的标准方程和几何意义,焦点三角形的周长为2a+2c,直接计算得出结果,属于基础题.4B【解析】【分析】由于ADBC,ADCD,所以AD平面BCD,故平面ADC平面BCD.【详解】画出图象如下图所示,由于ADBC,ADCD,所以AD平面BCD,而AD平面ADC,所以平面ADC平面BCD.故选B.【点睛】本小题主要考查面面垂直的判定定理,考查线面垂直的判定定理,以及分析和解决问题的能力,属于基础题.5D【解析】【分析】通过证明AC平面BB1D1D,可证得直线BD1与直线AC垂直,即所成的角为90.【详解】画出图像如下图所示,连接BD,B1D1,由于几何体为正方体,故ACBD,ACDD1,所以AC平面BB1D1D,所以ACBD1,即所成的角为90.所以选D.【点睛】本小题主要考查空间两条直线的位置关系,考查正方体的几何性质,还考查了线面垂直的判定定理,属于基础题.6D【解析】【分析】将N=5代入算法程序,运行后得到输出结果为56.【详解】将N=5代入算法程序,S=12,15,k=2,S=23,25,k=3,S=34,35,k=4,S=45,45,k=5,S=56,5=5,退出循环结构,输出S=56.故选B.【点睛】本小题考查程序框图,其中包括了考查循环结构,答题时,只需要按照程序循环运行,直至退出程序,得到输出的结果.属于基础题.7A【解析】试题分析:因为sin=12,所以cos2=1-2sin2=12又因cos2=12,所以sin=12,因此“sin=12”是“cos2=12”的充分不必要条件故选A考点:充分性、必要性问题8D【解析】【分析】依题意可知PF2=b2a=2c,结合a2=b2+c2,化简后可求得离心率.【详解】由于PF2x轴,且PF1F2是等腰直角三角形,所以PF2=F1F2,即b2a=2c,即a2-c2a=2c,a2-2ac-c2.两边除以a2得e2+2e-1=0,解得e=2-1,故选D.【点睛】本小题考查椭圆的几何性质,考查等腰直角三角形的几何性质,考查椭圆离心率的求法.解题的关键是通过阅读题目,得到一个方程,然后结合a2=b2+c2,将得到的方程转化为离心率的形式,然后解方程可求得离心率的值.考查了分析和求解问题的能力,属于基础题.9C【解析】解:易证所得三棱锥为正四面体,它的棱长为1,故外接球半径为64,外接球的体积为43(63)3=68故选C10A【解析】【分析】画出直观图,计算三棱锥四个面的面积,由此求得面积的最大值.【详解】画出直观图如下图所示,计算各面的面积为SABC=1221=22,SABD=SBCD=1221=1,SACD=1223=62,故最大面积为62,所以选A.【点睛】本小题主要考查三视图还原为原图,并求原图各个面的面积,由于题目所给垂直较多,故只需要代入直角三角形面积公式,即可计算得到结果,属于基础题.11C【解析】【分析】将原方程变为两个函数y=kx-2+3,y=4-x2.画出图像,结合图像求得k的取值范围.【详解】原方程变为两个函数y=kx-2+3,y=4-x2.画出图像如下图所示,由图可知,斜率k的取值范围为kAB,kAC,kAC=34,由于直线AB和半圆相切,故圆心到直线的距离为半径,即-2k+31+k2=2,解得k=512.故斜率的取值范围为512,34,故选C.【点睛】本小题主要考查函数零点的分析方法,考查半圆的方程的识别,考查直线和圆的位置关系的表示.首先是函数零点的问题,转化为两个函数图像的交点来考查.其次是数形结合的数学思想方法,要注意到y=4-x2实际上表示的图像是半圆,而直线过定点,由此画出图像,再计算斜率即可求得斜率的取值范围.12A【解析】【分析】根据题意,画出图像,由于直角三角形PMN斜边的中线等于斜边的一半,故MN=2PD,所以通过求PD的范围来求MN的范围.当P,O,D三点共线时,有最大值,由此可得出选项.【详解】根据题意,画出图像如下图1所示,由于直角三角形PMN斜边的中线等于斜边的一半,故MN=2PD,根据图像可知,当P,O,D三点共线时,有最大值,如图2所示.此时直线PM斜率为零,直线PN斜率不存在,直角三角形PMN为等腰直角三角形.将y=1代入圆的方程,求得M-3,1,故PM=PN=3+1,所以MN=23+1=6+2.也即MN的最大值为6+2,只有选项A符合,故选A.图1图2【点睛】本小题主要考查直线与圆的位置关系,考查数形结合的数学思想和动态分析问题的能力,属于难题.136【解析】【分析】根据两个向量平行的坐标表示,列方程,求得x的值.【详解】由于a/b,所以43-2x=0,解得x=6.【点睛】本小题考查两个向量平行的条件.对于两个向量a=x1,y1,b=x2,y2,若ab,则x1x2+y1y2=0;若a/b,则x1y2-x2y1=0.1436【解析】【分析】画出图像,由图像可知SA与平面ABC所成角为SAO,由此计算得线面角的余弦值.【详解】画出图像如下图所示,由图可知,SO平面ABC,且O是底面等边三角形的中心,故SAO是直线SA与底面ABC所成的角.其中AO=33AB=33,SA=2,故cosSAO=AOSA=332=36.【点睛】本小题主要考查直线与平面所成角的余弦值的计算.要计算这个余弦值,首先根据线面角的概念作出这个角,再计算它的余弦值.属于基础题.151【解析】【分析】由于三棱锥A-BCD底面积固定,所以高最高的时候取得体积的最大值,此时高为12AC.由此计算得体积的最大值.【详解】由于三棱锥A-BCD底面积固定,所以高最高的时候取得体积的最大值,此时高为12AC.故体积的最大值为1312BD12AC12AC=12422323=1.【点睛】本小题主要考查三棱锥的体积计算,考查折叠问题的分析方法.在求体积最大值的过程中,由于底面积一定,则高取得最大值时,体积取得最大值.1612【解析】【分析】两个函数都关于点1,0中心对称,且左右两次各有6个交点,故横坐标总和为62=12.【详解】画出图像如下图所示,有图可知,两个函数都关于点1,0中心对称,且左右两次各有6个交点,故横坐标总和为62=12.【点睛】本小题主要考查反比例函数的图像与性质,考查正弦函数型三角函数的图像与性质,考查函数的对称性,要用到数形结合的数学思想方法.对于函数y=11-x,可类比y=1-x的图像,向右平移1个单位得到,而y=2sinx的最小正周期为2,由此可画出图像.再结合图像来解决.属于难题.17(I)C=3 (II)3.【解析】【分析】(1)先用正弦定理转化已知条件,再用余弦定理化简成cosC的形式,求得cosC的值,由此得到C的大小.(2)利用角C的余弦定理,结合基本不等式,求得ab的最大值,再利用三角形的面积公式求得面积的最大值.【详解】(I)由正弦定理及sin2A+sin2B-sin2C=sinAsinB得a2+b2-c2=ab由余弦定理cosC=a2+b2-c22ab=ab2ab=12 又0C,则C=3 (II)由(I)得C=3,又c=2,a2+b2-c2=ab得 a2+b2-4=ab 又a2+b22ab可得ab4 SABC=12absinC=34ab3,当a=b时取得等号所以的ABC面积最大值为3.【点睛】本小题主要考查利用正弦定理和余弦定理解三角形,并用基本不等式求三角形面积的最大值,属于中档题.18(1)见解析;(2)3【解析】【分析】(1)利用有一个角是60的等腰三角形是等边三角形,证得三角形ABA1是等边三角形,由此证得ABOA1,再根据三角形CAB为等腰三角形证得COAB,故AB平面A1OC.(2)由(1)利用面面垂直的性质定理,证得OA1平面ABC,即OA1为三棱柱的高,由此可求得三棱柱的体积.【详解】(1)证明:连结A1B.,因为CACB,OAOB,所OCAB因为ABAA1,BAA160,所三角形AA1B为等边三角形,所以AA1A1B,又OAOB,所以OA1AB,又OCOA1O,AB面A1OC(2)由题可知,ABC与AA1B是边长为2的等边三角形,得OA13平面ABC平面A1ABB 平面ABC平面A1ABBAB,由(1)OA1AB,OA1平面A1ABBOA1面ABCOA1为三棱柱ABCA1B1C1的高VABCA1B1C1SABCOA13【点睛】本小题主要考查空间点线面位置关系和空间几何体体积的求法.要证明线面垂直,可以通过证明线线垂直,然后利用线面垂直的判定定理得到结论.要求一个几何体的体积,首先判断几何体的结构,是椎体还是柱体,或者是台体,然后主要将几何体的高找到,进而利用体积公式求得体积.19(I) ()(II)= 【解析】试题分析:解:(I)由已知有利用累差迭加即可求出数列的通项公式:()(II)由(I)知,=而,又是一个典型的错位相减法模型,易得=考点:数列的通项公式和求和的运用点评:解决的关键是对于数列的递推关系式的运用,根据迭代法得到通项公式,并结合错位相减法求和。20(1)43k0;(2)见解析;(3)不存在.【解析】【分析】(1)设出直线的方程,利用圆心到直线的距离小于半径列不等式,可求得k的取值范围.(2)联立直线的方程和圆的方程,写出韦达定理.代入AMAN并化简,可证得AMAN为定值.(3)先假设存在这样的直线,利用两个向量的数量积为零建立方程并化简成一元二次方程的形式,计算其判别式,可知不存在.【详解】(1)(法一)设直线方程为y=kx+4,即kx-y+4=0,点C(2,3)到直线的距离为d=|2k-3+4|k2+1=|2k+1|k2+11,解得43k0,解得43k0(2)设直线方程为y=kx+4,联立圆C的方程得(k2+1)x2-(4-2k)x+4=0,设M(x1,y1),N(x2,y2),则x1+x2=4-2kk2+1,x1x2=4k2+1AMAN =(x1,y1-4)(x2,y2-4) =(x1,kx1)(x2,kx2)=(k2+1)x1x2=4(3)假设存在满足条件的直线,则有MONOMONO=0x1x2+y1y2=0y1y2=(kx1+4)(kx2+4)=k2x1x2+4k(x1+x2)+16得(k2+1)x1x2+4k(x1+x2)+16=0,从而得3k2+4k+5=0,=16-600,此方程无实根所以,不存在以MN为直径的圆过原点。【点睛】本小题主要考查直线和圆的位置关系.要直线和圆由两个交点,可以用圆心到直线的距离小于半径来列不等式解决.21(1)-1a1;(2)1t98【解析】试题分析:(1)把函数化简为f(x)=x2+(2-2a)x(x2a)-x2+(2+2a)x(x2a),这个分段函数是由两个二次函数构成,右边是开口向上的抛物线的一部分,对称轴是x=a-1,左边是开口向下的抛物线的一部分,对称轴是x=a+1,为了使函数为增函数,因此有a-12aa+1;(2)方程f(x)-tf(2a)=0有三个不相等的实数根,就是函数y=f(x)的图象与直线y=tf(2a)有三个不同的交点,为此研究函数f(x)的单调性,由(1)知当-1a1时,f(x)在R上单调递增,不合题意,当a-1时,2aa-1a+1,y=f(x)在(-,2a)上单调增,在(2a,a-1)上单调减,在(a-1,+)上单调增,关于x的方程f(x)=tf(2a)有三个不相等的实数根的条件是f(a-1)tf(2a)f(2a), 由此有-(a-1)2t4a4a,因为a-1,则有1t1时同理讨论即可试题解析:(1)f(x)=x2+(2-2a)x(x2a
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 逻辑思维训练课程教案:逻辑推理与论证方法
- 长方体结构认识与性质学习教案
- 电力系统运行与维护习题集
- 音乐分析考试试题及答案
- 医院停水考试试题及答案
- 医院库房考试试题及答案
- 六一俱乐部活动方案
- 六一光影活动方案
- 六一创意夜晚活动方案
- 六一宠物活动策划方案
- 军营超市环境卫生管理方案
- 快乐海豚课件教学课件
- 国开《农村社会学》形考作业1-4参考答案
- 电子烟质量管理手册
- 城市数字底座CIM数字城市发展方向与技术
- 财政学学习通题库及答案
- 2023-2024学年全国初二下历史人教版期末试卷(含答案解析)
- 形势与政策智慧树知到答案2024年西北师范大学
- 2024-2030年中国射击场行业市场发展趋势与前景展望战略分析报告
- 施工现场建筑垃圾减量化专项方案
- 高三数学一轮复习题型与战法精准训练(新高考专用)7.2.2点线面的位置关系(针对练习)(原卷版+解析)
评论
0/150
提交评论