

全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
排列组合的常见模型一、基础知识:(一)处理排列组合问题的常用思路:1、特殊优先:对于题目中有特殊要求的元素,在考虑步骤时优先安排,然后再去处理无要求的元素。例如:用组成无重复数字的五位数,共有多少种排法?2、寻找对立事件:如果一件事从正面入手,考虑的情况较多,则可以考虑该事的对立面,再用全部可能的总数减去对立面的个数即可。例如:在10件产品中,有7件合格品,3件次品。从这10件产品中任意抽出3件,至少有一件次品的情况有多少种3、先取再排(先分组再排列):排列数是指从个元素中取出个元素,再将这个元素进行排列。但有时会出现所需排列的元素并非前一步选出的元素,所以此时就要将过程拆分成两个阶段,可先将所需元素取出,然后再进行排列。例如:从4名男生和3名女生中选3人,分别从事3项不同的工作,若这3人中只有一名女生,则选派方案有多少种。二)排列组合的常见模型1、捆绑法(整体法):当题目中有“相邻元素”时,则可将相邻元素视为一个整体,与其他元素进行排列,然后再考虑相邻元素之间的顺序即可。例如:5个人排队,其中甲乙相邻,共有多少种不同的排法2、插空法:当题目中有“不相邻元素”时,则可考虑用剩余元素“搭台”,不相邻元素进行“插空”,然后再进行各自的排序注:(1)要注意在插空的过程中是否可以插在两边 (2)要从题目中判断是否需要各自排序例如:有6名同学排队,其中甲乙不相邻,则共有多少种不同的排法3、错位排列:排列好的个元素,经过一次再排序后,每个元素都不在原先的位置上,则称为这个元素的一个错位排列。例如对于,则是其中一个错位排列。3个元素的错位排列有2种,4个元素的错位排列有9种,5个元素的错位排列有44种。以上三种情况可作为结论记住例如:安排6个班的班主任监考这六个班,则其中恰好有两个班主任监考自己班的安排总数有多少种?4、依次插空:如果在个元素的排列中有个元素保持相对位置不变,则可以考虑先将这个元素排好位置,再将个元素一个个插入到队伍当中(注意每插入一个元素,下一个元素可选择的空)例如:已知6个人排队,其中相对位置不变,则不同的排法有多少种5、不同元素分组:将个不同元素放入个不同的盒中6、相同元素分组:将个相同元素放入个不同的盒内,且每盒不空,则不同的方法共有种。解决此类问题常用的方法是“挡板法”,因为元素相同,所以只需考虑每个盒子里所含元素个数,则可将这个元素排成一列,共有个空,使用个“挡板”进入空档处,则可将这个元素划分为个区域,刚好对应那个盒子。例如:将6个相同的小球放入到4个不同的盒子里,那么6个小球5个空档,选择3个位置放“挡板”,共有_ 种可能7、涂色问题:涂色的规则是“相邻区域涂不同的颜色”,在处理涂色问题时,可按照选择颜色的总数进行分类讨论,每减少一种颜色的使用,便意味着多出一对不相邻的区域涂相同的颜色(还要注意两两不相邻的情况),先列举出所有不相邻区域搭配的可能,再进行涂色即可。例如:最多使用四种颜色涂图中四个区域,不同的涂色方案有多少种?二、典型例题:例1:某电视台邀请了6位同学的父母共12人,请12位家长中的4位介绍对子女的教育情况,如果这4位中恰有一对是夫妻,则不同选择的方法种数有多少例2:某教师一天上3个班级的课,每班上1节,如果一天共9节课,上午5节,下午4节,并且教师不能连上3节课(第5节和第6节不算连上),那么这位教师一天的课表的所有不同排法有( )A. 种 B. 种 C. 种 D. 种例3:2位男生和3位女生共5位同学站成一排,若男生甲不站两端,3位女生中有且只有两位女生相邻,则不同排法的种数是( )A. B. C. D. 例4:某班班会准备从甲,乙等7名学生中选派4名学生发言,要求甲,乙两名同学至少有一人参加,且若甲乙同时参加,则他们发言时不能相邻,那么不同的发言顺序种数为( )A. 360 B. 520 C. 600 D. 720例5:从单词“equation”中选取5个不同的字母排成一排,含有“qu”(其中“qu”相连且顺序不变)的不同排列共有_种例6:设有编号的五个茶杯和编号为的五个杯盖,将五个杯盖盖在五个茶杯上,至少有两个杯盖和茶杯的编号相同的盖法有( )A. 30种 B. 31种 C. 32种 D. 36种例7:某人上10级台阶,他一步可能跨1级台阶,称为一阶步,也可能跨2级台阶,称为二阶步;最多能跨3级台阶,称为三阶步,若他总共跨了6步,而且任何相邻两步均不同阶,则此人所有可能的不同过程的种数为( )A. 6 B. 8 C. 10 D. 12例8:某旅行社有导游9人,其中3人只会英语,2人只会日语,其余4人既会英语又会日语,现要从中选6人,其中3人负责英语导游,另外三人负责日语导游,则不同的选择方法有_种例9:如图,用四种不同颜色给图中六个点涂色,要求每个点涂一种颜色,且图中每条线段的两个端点涂不同颜色,则不同的涂色方法有( )A. 种 B. 种 C. 种
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年地籍测量员技能鉴定高级面试重点题
- 2025年环保安全生态保护题集答案
- 2025年企业人力资源管理师三级考试预测题
- 2025年美容美发技能大师挑战赛试题及答案解析
- 2025年教育心理学家专业能力评估试题及答案解析
- 课件中文字的处理
- 2025年建筑师注册考试试题及答案解析
- 2025年建筑钢结构工程安全监理员职业资格考试试题及答案解析
- 2025年环境治理工程师职业技能考试试题及答案解析
- 2025年国际财务分析师资格考试试题及答案解析
- 海鲜活动促销活动方案
- 管线施工协调管理方案及措施
- 电力系统风险评估模型-洞察阐释
- 10万吨年硫铁矿烧渣综合利用技改项目环评报告表
- 2025至2030中国股权投资行业十四五发展分析及投资前景与战略规划报告
- 认证认可 培训 课件
- 中文版儿童睡眠习惯问卷(CSHQ)
- 设备开停机管理制度
- 2025至2030中国水利信息系统行业发展趋势分析与未来投资战略咨询研究报告
- 数字证据取证技术-洞察及研究
- (2025)公共基础知识真题库和答案
评论
0/150
提交评论