

免费预览已结束,剩余2页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
极 限 的 概 念教学目的:理解数列和函数极限的概念;教学重点:会判断一些简单数列和函数的极限;教学难点:数列和函数极限的理解教学过程:一、实例引入:例:战国时代哲学家庄周所著的庄子天下篇引用过一句话:“一尺之棰,日取其半,万世不竭。”也就是说一根长为一尺的木棒,每天截去一半,这样的过程可以无限制地进行下去。(1)求第天剩余的木棒长度(尺),并分析变化趋势;(2)求前天截下的木棒的总长度(尺),并分析变化趋势。观察以上两个数列都具有这样的特点:当项数无限增大时,数列的项无限趋近于某个常数A(即无限趋近于0)。无限趋近于常数A,意指“可以任意地靠近A,希望它有多近就有多近,只要充分大,就能达到我们所希望的那么近。”即“动点到A的距离可以任意小。二、新课讲授1、数列极限的定义: 一般地,如果当项数无限增大时,无穷数列的项无限趋近于某个常数A(即无限趋近于0),那么就说数列的极限是A,记作 注:上式读作“当趋向于无穷大时,的极限等于A”。“”表示“趋向于无穷大”,即无限增大的意思。有时也记作当时,A引例中的两个数列的极限可分别表示为_,_思考:是否所有的无穷数列都有极限?例1:判断下列数列是否有极限,若有,写出极限;若没有,说明理由 (1)1, ;(2),;(3)2,2,2,2,;(4)0.1,0.01,0.001,;(5)1,1,1,; 注:几个重要极限: (1) (2)(C是常数) (3)无穷等比数列()的极限是0,即 :2、当时函数的极限Oyx (1) 画出函数的图像,观察当自变量取正值且无限增大时,函数值的变化情况:函数值无限趋近于0,这时就说,当趋向于正无穷大时,函数的极限是0,记作: 一般地,当自变量取正值且无限增大时,如果函数的值无限趋近于一个常数A,就说当趋向于正无穷大时,函数的极限是A,记作:也可以记作,当时, (2)从图中还可以看出,当自变量取负值而无限增大时,函数的值无限趋近于0,这时就说,当趋向于负无穷大时,函数的极限是0,记作:一般地,当自变量取负值而无限增大时,如果函数的值无限趋近于一个常数A,就说当趋向于负无穷大时,函数的极限是A,记作:也可以记作,当时, (3)从上面的讨论可以知道,当自变量的绝对值无限增大时,函数的值都无限趋近于0,这时就说,当趋向于无穷大时,函数的极限是0,记作一般地,当自变量的绝对值无限增大时,如果函数的值无限趋近于一个常数A,就说当趋向于无穷大时,函数的极限是A,记作:也可以记作,当时,特例:对于函数(是常数),当自变量的绝对值无限增大时,函数的值保持不变,所以当趋向于无穷大时,函数的极限就是,即 例2:判断下列函数的极限: (1) (2) (3) (4)三、课堂小结 1、数列的极限 2、当时函数的极限四、练习与作业1、判断下列数列是否有极限,若有,写出极限 (1)1, ;(2)7,7,7,7,; (3); (4)2,4,6,8,2n,; (5)0.1,0.01,0.001,; (6)0,; (7),; (8),; (9)2,0,2,,, 2、判断下列函数的极限: (1) (2) (3) (4) (5) (6) (7) (8)补充:3、如图,在四棱锥P-ABCD中,底面ABCD是矩形,PA平面ABCD,M、N分别是AB、PC的中点。(1)求证:MNAB;(2)若平
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 安阳市2024-2025学年八年级下学期语文期中模拟试卷
- 阿拉善盟2025-2026学年八年级下学期语文月考模拟试卷
- 安徽省滁州市南谯区2023-2024学年高三上学期第二次月考化学考题及答案
- PSH的识别与护理课件
- 2025 年小升初清远市初一新生分班考试数学试卷(带答案解析)-(人教版)
- 广东省广州市2025年高中“古诗文积累与阅读竞赛”初赛试题(语文)
- 教师教学2025工作总结
- 社区消防知识培训课件信息
- 2024-2025学年山东省潍坊市寒亭区青岛版五年级下册期中测试数学试卷(含答案)
- 房子首付合同范本
- 主变压器安装施工方案完整版本
- 深度学习教学改进丛书 深度学习:走向核心素养(理论普及读本)
- 人民医院整形外科临床技术操作规范2023版
- 脚手架搭拆施工方案
- 高等教育新论复习提纲-czy
- 汽车风窗刮水器机构设计
- 重庆某广场高边坡喷锚支护施工方案(脚手架设计)
- 用友ERP沙盘大赛推演工具表(模板)
- 传染病学总论(英文稿)
- 教师师德师风专题培训讲座《润物细无声》
- GB/T 5118-2012热强钢焊条
评论
0/150
提交评论