高中数学1.5函数y=Asinωxφ的图象教案新人教A必修4_第1页
高中数学1.5函数y=Asinωxφ的图象教案新人教A必修4_第2页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

正弦型函数y=Asin(x+)的图象教学设计正弦型函数y=Asin(x+)的图象一、教材分析本节课是普通高中课程标准实验教科书数学必修4(人教B版)第一章1.3.1正弦函数的图象与性质其中部分内容。作为函数,它是已学过的一次函数、二次函数、指数函数与对数函数、正弦函数的后继内容,也是三角函数的基本内容。因此,本节的学习全章中乃至整个函数的学习中具有极其重要的地位与作用。正弦型函数的图象变换是在学生掌握了三角函数的定义、三角函数线、诱导公式、五点法作图的基础上进行的一节新授课,是学生对所学内容的巩固以及五点法作图熟练程度的加深和三种图象变换的熟练应用。通过本节课熟练掌握五点法作图和三种图象变换。正弦型函数的图象变换是学生对前面所学五点作图熟练程度的加深和三种图象变换的熟练应用和延伸,属于程序性知识。本节课通过图象变换具体案例的分析,发现变换规律,掌握变换规则,再提供适当的变式练习,以便让学生熟知规则适用的各种不同条件,让学生把静态的知识转化为动态的技能,从而形成程序性知识技能的熟练掌握。二、学情分析学生进入高中学习已经半年多,对于高中常用的数学思想方法和研究问题的方法已经有初步的了解,并且逐步适应高中的学习方法和教师的教学方式,喜欢独立积极思考、喜欢小组探究、合作交流、有着较强的求知欲和好奇心。本节课以学习自主课为先行,通过导学案预习本节课内容,通过图象的五点法作图,参数A、的作用,并设置阶段性问题,使学生在学习过程中学会观察问题,研究问题,进一步自觉地总结问题,引导学生渐进式加深对图象变换的认知。三、目标分析1. 知识与技能目标结合观览车的实例,了解周期、频率、初相的定义;掌握用五点法作y=Asin(x+)的简图,并通过作图过程明确A、对函数图象变化的影响,概括出三角函数图象各种变换的实质和内在规律,并用图象变换画出函数y=Asin(x+)的图象。2. 过程与方法目标通过对探索过程的体验,培养学生的观察能力和探索问题的能力,体会数形结合以及从特殊到一般的数学思想,锻炼从具体到抽象的思维方法,从而达到从感性认识到理性认识的飞跃。3. 情感、态度、价值观目标通过学习过程培养学生探索与协作的精神,提高合作学习的意识;领悟物质运动具有规律性的哲学思想;唤起学生追求真理、乐于创新的情感需求,引发学生渴求知识的强烈愿望,树立科学的人生观、价值观。四、教学重点、难点教学重点:考查参数A、对函数图象的影响,理解并能形成由y=sinx的图象到y=Asin(x+)的图象程序性变换过程。教学难点:发现与概括A、对y=Asin(x+)的图象影响的规律是本节课的难点,再者是变换时,图象的平移量和伸缩过程为本节课教学难点。五、过程分析1. 设置情境通过课本中的观览车问题引入正弦型函数y=Asin(x+),那么,这个函数的图象怎样作?图象与y=sinx的图象有什么关系呢?参数A、对函数有什么样的影响?提问这些问题,激发起学生讨论学习的兴趣,并初步形成结论。2. 讨论例1-例3,分别明确A、对函数图象变化产生的影响例1作出函数与的图象。例2 作出函数与的图象。例3 作出函数与的图象。学生展示,教师引导补充得到结论:结论一 函数y=Asinx(A0且A1)的图象可以看作是把y=sinx的图象上所有点的纵坐标伸长(当A1时)或缩短(当0A0,1)的图象可以看作是把y=sinx的图象上所有点的横坐标缩短(当1时)或伸长(当00时)或向右(当0)、y=sinx(0,1)、y=sin(x+)的图象与y=sinx的图象有什么关系?3. 例4作出函数与的简图,对比图象,探究变换过程作出函数与的简图,观察对比 y=sin2x与及图象,思考:如何由函数y=sin2x的图象通过变换得到函数及的图象?(1)提出问题,小组讨论,并由学生提出问题:如何由函数y=sin2x的图象通过变换得到函数及的图象?【设计意图】:激发兴趣、提出问题、构建平台。学生在进行此变换时,可能会类比例3:“左移个单位长度”,但是通过“五点作图法”画图进行对比,最后发现这样做是错误的,从而激发他们强烈的好奇心和求知欲,提出问题,当疑问被抛出后,有一部分已经注意并解决此问题的同学,通过课堂展示,试图解释此问题,由此推动本问题的探究,掀起本节课的一次高潮,而探究的过程就伴随评价的过程,教师在每一个环节中,引导学生自评、互评,并通过教师的激励性评价,激发学生的学习热情。探究本质、寻求关键点。当学生找到此题的答案后,自然就会思考这个问题的一般性结论是什么?解决的关键点是什么?通过练习,分析得出一般规律时,引导学生着眼x的变化,把x+变形为(x+),因此,从y=sinx到y=sin(x+)的变换过程就是把x变成了x+,这就是解决问题的关键点。结论四 函数y=sin ( wx + )(w 0且w1)的图象可以看作是把 y=sin wx 的图象向左 (当 0时)或向右(当 0时)平移个单位而得到的。(2)由函数y=sinx的图象是否有其它方法变换得到函数及的图象?y=sinxy=sin(x+)y=sin(2x+)先进行平移变换,再进行周期变换时,初相改变吗?函数图象变换时,变换的主体始终是自变量x,抓住这一要点,难点迎刃而解。结论:【设计意图】:第二种变换方法难点在于初相在周期变换中是否受到影响,首先引导学生观察例3函数y=sin(x+)的图象,并对比与函数y=sin(2x+)的横坐标的关系,让学生从感性上认识到变换的过程;再从函数的观点出发,强调自变量的主动权,故而,学生对此问题的认识从感性上升到理性,深刻认识这一变换的实质,突破了这节课的难点4. 课堂练习如何由的图象得到的图象?(两种方法)【设计意图】:让学生进行自我练习,进一步熟悉本节课所学内容,形成程序性步骤,达到熟练程度。5. 课堂小结提出问题:会用五点法做正弦型函数图象了吗?由y=sinx的图象到y=Asin(x+)的图象,会进行变换了吗?有几种方法?【设计意图】:让学生通过问题进行自我总结,使本节课学到的知识上升到方法的层面,便于总结记忆。六、效果分析1. 通过本节课的学习,学生会用“五点法”作函数y=Asin

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论