免费预览已结束,剩余4页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
高考资源网()来源:高考资源网版44常见三角不等式(1)若,则.(2) 若,则.(3) .45.同角三角函数的基本关系式 ,=,.46.正弦、余弦的诱导公式(n为偶数)(n为奇数)(n为偶数)(n为奇数) 47.和角与差角公式 ;.(平方正弦公式);.=(辅助角所在象限由点的象限决定, ).48.二倍角公式 .49. 三倍角公式 .50.三角函数的周期公式 函数,xR及函数,xR(A,为常数,且A0,0)的周期;函数,(A,为常数,且A0,0)的周期.51.正弦定理.52.余弦定理;.53.面积定理(1)(分别表示a、b、c边上的高).(2).(3).54.三角形内角和定理 在ABC中,有.55. 简单的三角方程的通解 . .特别地,有. .56.最简单的三角不等式及其解集 . . . .57.实数与向量的积的运算律设、为实数,那么(1) 结合律:(a)=()a;(2)第一分配律:(+)a=a+a;(3)第二分配律:(a+b)=a+b.58.向量的数量积的运算律:(1) ab= ba (交换律);(2)(a)b= (ab)=ab= a(b);(3)(a+b)c= a c +bc.59.平面向量基本定理 如果e1、e 2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量,有且只有一对实数1、2,使得a=1e1+2e2不共线的向量e1、e2叫做表示这一平面内所有向量的一组基底60向量平行的坐标表示 设a=,b=,且b0,则ab(b0).53. a与b的数量积(或内积)ab=|a|b|cos 61. ab的几何意义数量积ab等于a的长度|a|与b在a的方向上的投影|b|cos的乘积62.平面向量的坐标运算(1)设a=,b=,则a+b=.(2)设a=,b=,则a-b=. (3)设A,B,则.(4)设a=,则a=.(5)设a=,b=,则ab=.63.两向量的夹角公式(a=,b=).64.平面两点间的距离公式 =(A,B).65.向量的平行与垂直 设a=,b=,且b0,则A|bb=a .ab(a0)ab=0.66.线段的定比分公式 设,是线段的分点,是实数,且,则().67.三角形的重心坐标公式 ABC三个顶点的坐标分别为、,则ABC的重心的坐标是.68.点的平移公式 .注:图形F上的任意一点P(x,y)在平移后图形上的对应点为,且的坐标为.69.“按向量平移”的几个结论(1)点按向量a=平移后得到点.(2) 函数的图象按向量a=平移后得到图象,则的函数解析式为.(3) 图象按向量a=平移后得到图象,若的解析式,则的函数解析式为.(4)曲线:按向量a=平移后得到图象,则的方程为.(5) 向量m=按向量a=平移后得到的向量仍然为m=.70. 三角形五“心”向量形式的充要条件设为所在平面上一点,角所对边长分别为,则(1)为的外心.(2)为
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 绿色建筑市场分析与前景展望
- 厂家保养维修合同范本
- 北京幼师劳动合同范本
- 古房老屋出售合同范本
- 保险理赔劳动合同范本
- 合同数量不足补充协议
- 农村楼房兄弟共协议书
- 公司间债务偿还协议书
- 公园维修管道合同范本
- 厂区木材收购合同范本
- 甜水园吉野家餐厅合同7篇
- 2025年考编护理解剖学题库及答案
- 2025年丽水市属企业面向残疾人公开招聘工作人员7人考试参考试题及答案解析
- 镇江市2025年度专业技术人员继续教育公需科目考试题库(附答案)
- 2024年蚌埠五河县事业单位选调工作人员考试真题
- 亨利八世课件
- 足球绕杆射门课件
- 2025年广东公务员考试申论试题及参考答案(县级)
- 2025湖北黄石市城市发展投资集团有限公司人才引进拟录笔试历年参考题库附带答案详解
- 2025年农险初级核保考试题库
- 大学生创新创业基础(创新创业课程)完整全套教学课件
评论
0/150
提交评论