




已阅读5页,还剩19页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1,1.2.1排列(一),2,探究:,问题1:从甲、乙、丙3名同学中选出2名参加一项活动,其中1名同学参加上午的活动,另名同学参加下午的活动,有多少种不同的选法?,问题2:从1,2,3,4这4个数中,每次取出3个排成一个三位数,共可得到多少个不同的三位数?,上面两个问题有什么共同特征?可以用怎样的数学模型来刻画?,3,探究:,问题1:从甲、乙、丙3名同学中选出2名参加一项活动,其中1名同学参加上午的活动,另名同学参加下午的活动,有多少种不同的选法?,分析:把题目转化为从甲、乙、丙3名同学中选2名,按照参加上午的活动在前,参加下午的活动在后的顺序排列,求一共有多少种不同的排法?,4,第一步:确定参加上午活动的同学即从3名中任选1名,有3种选法.,第二步:确定参加下午活动的同学,有2种方法,根据分步计数原理:32=6即共6种方法。,5,把上面问题中被取的对象叫做元素,于是问题就可以叙述为:,从3个不同的元素a,b,c中任取2个,然后按照一定的顺序排成一列,一共有多少种不同的排列方法?,ab,ac,ba,bc,ca,cb,6,问题2:从1,2,3,4这4个数中,每次取出3个排成一个三位数,共可得到多少个不同的三位数?,叙述为:从4个不同的元素a,b,c,d中任取3个,然后按照一定的顺序排成一列,共有多少种不同的排列方法?,abc,abd,acb,acd,adb,adc;bac,bad,bca,bcd,bda,bdc;cab,cad,cba,cbd,cda,cdb;dab,dac,dba,dbc,dca,dcb.,有此可写出所有的三位数:123,124,132,134,142,143;213,214,231,234,241,243,312,314,321,324,341,342;412,413,421,423,431,432。,7,问题1从甲、乙、丙3名同学中选出2名参加某天的一项活动,其中1名参加上午的活动,1名参加下午的活动,有哪些不同的排法?,实质是:从3个不同的元素中,任取2个,按一定的顺序排成一列,有哪些不同的排法?,问题2从1,2,3,4这4个数中,每次取出3个排成一个三位数,共可得到多少个不同的三位数?,实质是:从4个不同的元素中,任取3个,按照一定的顺序排成一列,写出所有不同的排法.,定义:一般地说,从n个不同的元素中,任取m(mn)个元素,按照一定的顺序排成一列,叫做从n个不同的元素中取出m个元素的一个排列.,8,基本概念,1、排列:,从n个不同元素中取出m(mn)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列。,说明:,1、元素不能重复。,2、“按一定顺序”就是与位置有关,这是判断一个问题是否是排列问题的关键。,3、两个排列相同,当且仅当这两个排列中的元素完全相同,而且元素的排列顺序也完全相同。,4、mn时的排列叫全排列。,(有序性),(互异性),下列问题中哪些是排列问题?,(1)10名学生中抽2名学生开会,(2)10名学生中选2名做正、副组长,(3)从2,3,5,7,11中任取两个数相乘,(4)从2,3,5,7,11中任取两个数相除,(5)20位同学互通一次电话,(6)20位同学互通一封信,(7)以圆上的10个点为端点作弦,(8)以圆上的10个点中的某一点为起点,作过另一个点的射线,(9)有10个车站,共需要多少种车票?,(10)有10个车站,共需要多少种不同的票价?,10,2、排列数:,从n个不同的元素中取出m(mn)个元素的所有排列的个数,叫做从n个不同的元素中取出m个元素的排列数。用符号表示。,“排列”和“排列数”有什么区别和联系?,11,问题中是求从个不同元素中取出个元素的排列数,记为,问题2中是求从4个不同元素中取出3个元素的排列数,记为,已经算出,12,探究:从个不同元素中取出个元素的排列数是多少?,又各是多少?,13,14,(1)第一个因数是n,后面每一个因数比它前面一个因数少1.最后一个因数是nm1共有m个因数(2),观察排列数公式有何特征:,15,16,正整数1到n的连乘积,叫做n的阶乘,用n!表示。,当m=n时,规定:0!=1,17,排列数公式(2):,说明:,1、排列数公式的第一个常用来计算,第二个常用来证明。,2、对于这个条件要留意,往往是解方程的隐含条件。,18,小结:,【排列】从n个不同元素中选出m(mn)个元素,并按一定的顺序排成一列.【关键点】1、互异性(被选、所选元素互不相同)2、有序性(所选元素有先后位置等顺序之分)【排列数】所有排列总数,19,例1、某年全国足球甲级A组联赛共有14个队参加,每队要与其余各队在主、客场分别比赛一次,共进行多少场比赛?,解:14个队中任意两队进行1次主场比赛与1次客场比赛,对应于从14个元素中任取2个元素的一个排列,因此,比赛的总场次是,20,练习,某段铁路上有12个车站,共需要准备多少种普通客票?,每张票对应着2个车站的一个排列,解,21,例2(1)从5本不同的书中选3本送给3名同学,每人各1本,共有多少种不同的送法?(2)从5种不同的书中买3本送给3名同学,每人各1本,共有多少种不同的送法?,=543=60,被选元素可重复选取,不是排列问题!,555=125,“从5个不同元素中选出3并按顺序排列”,22,例3、用0到9这10个数字可以组成多少个没有重复数字的三位数?,特殊位置“百位”,特殊元素“0”,法1:,法2:,特殊位置优先安排,特殊元素优先考虑,法3:,正难则反(间接法),23,对于有限制条件的排列问题,必须遵循“特殊元素优先考虑,特殊位置优先安排”,并注意“合理
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年物业客服专员考试题集及答案
- 2025年安全员招聘高频面试题解析
- 制造业产品质量协议
- 2025年土地整治项目管理员中级考试模拟题及高频题库
- 2025年能源监测工程师综合知识技能考察试卷及答案解析
- 2025年绿色建筑技术员职业资格考试试题及答案解析
- 2025年金融市场分析师资格考试试题及答案解析
- 2025年教师资格认证考试试题及答案解析
- 2025年电子商务运营经理面试问题及答案
- 2025年建筑幕墙工程师职业资格考试试题及答案解析
- 传媒入股协议合同
- 《有机化学》课程标准
- 《高效能电机》课件
- 汽车维护与保养 任务工单1 发动机油液与滤清器检查及更换
- 外科腹腔镜手术护理
- 非专用化妆包项目质量管理方案
- 工程类公路培训课件
- 2024年度中药的性能《四气五味》课件
- 太阳能光伏发电项目EPC工程设计施工范围及主要工程量
- 《汽车电工电子》课程标准
- 2024关于进一步提升基层应急管理能力的意见学习解读课件
评论
0/150
提交评论