二次函数应用销售问题_第1页
二次函数应用销售问题_第2页
二次函数应用销售问题_第3页
二次函数应用销售问题_第4页
二次函数应用销售问题_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

二次函数的应用(营销利润问题),某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:每涨价1元,每星期少卖出10件,已知商品的进价为每件40元,如何定价才能使利润最大?,来到商场,题目涉及到哪些变量?哪一个量是自变量?哪些量随之发生了变化?,某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:每涨价1元,每星期少卖出10件,已知商品的进价为每件40元,如何定价才能使利润最大?,来到商场,分析:,设每件涨价x元,则每星期售出商品的利润y也随之变化,我们先来确定y与x的函数关系式。涨价x元时则每星期少卖件,实际卖出件,每件利润元,总利润为元,10 x,(300-10 x),(60+x-40),y=(60+x-40)(300-10 x),即,(0X30),(0X30),所以,当定价为65元时,利润最大,最大利润为6250元,“动脑筋”某网络玩具店引进一批进价为20元/件的玩具,如果以单价30元销售,那么一个月内可售出180件.根据销售经验,提高销售单价会导致销售量的下降,即销售单价每上涨1元,月销售量将相应减少10件.当销售单价为多少元时,该店能在一个月内获得最大利润?,解设每件商品的销售单价上涨x元,一个月内获取的商品总利润为y元.每月减少的销售量为10 x(件),实际销售量为180-10 x(件),单价利润为(30+x-20)元,则y=(10+x)(180-10 x)即y=-10 x2+80 x+1800(x18).将上式进行配方,得y=-10(x-4)2+1960.当x=4时,即销售单价为34元时,y取最大值1960.答:当销售单价定为34元时,该店在一个月内能获得最大利润1960元.,思考:,你还有不同的设自变量的方法吗?所列函数表达式相同吗?所求结果相同吗?,例1.我国中东部地区雾霾天气趋于严重,环境治理已刻不容缓我市某电器商场根据民众健康需要,代理销售某种家用空气净化器,其进价是200元/台经过市场销售后发现:在一个月内,当售价是400元/台时,可售出200台,且售价每降低10元,就可多售出50台若供货商规定这种空气净化器售价不能低于300元/台,代理销售商每月要完成不低于450台的销售任务(1)试确定月销售量y(台)与售价x(元/台)之间的函数关系式,(2)求售价x的范围;,(3)当售价x(元/台)定为多少时,商场每月销售这种空气净化器所获得的利润w(元)最大?最大利润是多少?,典例讲解,解:(1)根据题中条件销售价每降低10元,月销售量就可多售出50千克,则月销售量y(台)与售价x(元/台)之间的函数关系式:y=200+50,化简得:y=-5x+2200;供货商规定这种空气净化器售价不能低于300元/台,代理销售商每月要完成不低于450台,则解得:300x350y与x之间的函数关系式为:y=-5x+2200(300x350);,(2)W=(x-200)(-5x+2200),整理得:W=-5(x-320)2+72000x=320在300x350内,当x=320时,最大值为72000,即售价定为320元/台时,商场每月销售这种空气净化器所获得的利润w最大,最大利润是72000元,例2.某体育用品商店试销一款成本为50元的排球,规定试销期间单价不低于成本价,且获利不得高于40%经试销发现,销售量y(个)与销售单价x(元)之间满足如图所示的一次函数关系(1)试确定y与x之间的函数关系式;,(2)若该体育用品商店试销的这款排球所获得的利润Q元,试写出利润Q(元)与销售单价x(元)之间的函数关系式;当试销单价定为多少元时,该商店可获最大利润?最大利润是多少元?,(3)若该商店试销这款排球所获得的利润不低于600元,请确定销售单价x的取值范围,(2)利润W与销售单价x之间的函数关系式为:Q=(x50)(x+120)=x2+170 x6000;Q=x2+170 x6000=(x-85)2+1225;所以当试销单价定为70元时,该商店可获最大利润,最大利润是1000元(3)当600=x2+170 x6000,解得:x1=60,x2=90,获利不得高于40%,最高价格为50(1+40%)=70,故60x70的整数故答案为:60x70的整数,归纳小结:,运用二次函数的性质求实际问题的最大值和最小值的一般步骤:,求出函数解析式和自变量的取值范围,配方变形,或利用公式求它的最大值或最小值。,检查求得的最大值或最小值对应的自变量的值必须在自变量的取值范围内。,解这类题目的一般步骤,1.某电脑商店销售某种品牌的电脑,所获利润y(元)与所销售电脑x(台)之间的函数关系满足y=-x2+120 x-1200,则当天卖出电脑_台时,可获得最大利润为_元,基础训练,2、一件工艺品进价为100元,标价135元售出,每天可售出100件.根据销售统计,一件工艺品每降价1元出售,则每天可多售出4件,要使每天获得的利润最大,每件需降价的钱数为()A.5元B.10元C.0元D.36元,3.某果园有100棵橘子树,平均每一棵树结600个橘子根据经验估计,每多种一棵树,平均每棵树就会少结5个橘子设果园增种x棵橘子树,果园橘子总个数为y个,则果园里增种_棵橘子树,橘子总个数最多,4.水果店王阿姨到水果批发市场打算购进一种水果销售,经过还价,实际价格每千克比原来少2元,发现原来买这种80千克的钱,现在可买88千克。(1)现在实际这种每千克多少元?(2)准备这种,若这种的量y(千克)与单价x(元/千克)满足如图所示的一次函数关系。,求y与x之间的函数关系式;,请你帮拿个主意,将这种的单价定为多少时,能获得最大利润?最大利润是多少?,九(1)班数学兴趣小组经过市场调查,整理出某种商品在第x(1x90)天的售价与销售量的相关信息如下表:已知该商品的进价为每件30元,设销售该商品的每天利润为y元,(1)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论