圆锥曲线与函数导数的综合_第1页
圆锥曲线与函数导数的综合_第2页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

圆锥曲线与函数 导数的综合切线是曲线的一个重要的几何性质,导数的介入使求切线方程成为可能,从而丰富了解析几何的研究内容,而研究圆锥曲线有关参数的范围,有关几何元素的最值则离不开函数和导数等工具,即用导数求切线的斜率,用函数或导数求最值或参数范围等,因此在考查圆锥曲线的试题中,经常出现圆锥曲线与函数和导数的综合题。在 2004年的试卷中, 函数,导数与解析几何综合的解答题出现的,有全国卷(理 )(函数值域),全国卷(理 )(函数值域),福建卷(文,理)(切线),湖南卷(理)(切线)辽宁卷(最值)。在 2005年的试卷中, 函数,导数与解析几何综合的解答题出现的,有 全国卷(文,理)(增减性,最值),广东卷(最值),天津卷(最值),江西卷(切线)浙江卷(最值)等【例1】(2005年,全国卷II,理21文22)P、Q、M、N四点都在椭圆上,F为椭圆在y轴正半轴上的焦点.已知求四边形PMQN的面积的最小值和最大值.【分析及解】 如图,由条件知MN和PQ是椭圆的两条弦,相交于焦点F(0,1),且PQMN,直线PQ、NM中至少有一条存在斜率,不妨设PQ的斜率为。又PQ过点F(0,1),故PQ方程为,将此式代入椭圆方程得设P、Q两点的坐标分别为、,则, 从而,当时,MN的斜率为,同上可推得故四边形的面积令,得因为,当时,且S是以为自变量的增函数,所以(2)当时,MN为椭圆长轴,综合(1),(2)知,四边形PMQN面积的最大值为2,最小值为 【例2】( 2005年,江西卷,理22)如图,设抛物线的焦点为F,动点P在直线上运动,过P作抛物线C的两条切线PA、PB,且与抛物线C分别相切于A、B两点.()求APB的重心G的轨迹方程.()证明PFA=PFB. 【分析及解】()设切点A、B坐标分别为, 由的导数为,切线AP的方程为: 切线BP的方程为:解得P点的坐标为:所以APB的重心G的坐标为 ,所以,由点P在直线l上运动,从而得到重心G的轨迹方程为: ()方法1: ,由于P点在抛物线外,则同理有AFP=PFB.方法2:当所以P点坐标为,则P点到直线AF的距离为:即所以P点到直线BF的距离为:所以d1=d2,即得AFP=PFB.当时,直线AF的方程:直线BF的方程:所以P点到直线AF的距离为:,同理可得到P点到直线BF的离,因此由d1=d2,可得到AFP=PFB. 【例3】(2004年,湖南卷,理21)如图,过抛物线x2=4y的对称轴上任一点P(0,m)(m0)作直线与抛物线交于A,B两点,点Q是点P关于原点的对称点.()设点P分有向线段所成的比为,证明:;()设直线AB的方程是x-2y+12=0,过A,B两点的圆C与抛物线在点A处有共同的切线,求圆C的方程. 【分析及解】()依题意,可设直线AB的方程为 代入抛物线方程得 设A、B两点的坐标分别是 、x2是方程的两根.所以 由点P(0,m)分有向线段所成的比为,得又点Q是点P关于原点的对称点,故点Q的坐标是(0,m),从而. 所以 ()由 得点A、B的坐标分别是(6,9)、

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论