

免费预览已结束,剩余2页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
高中数学一轮复习资料第二章 函数第二节 函数的单调性A组1(2009年高考福建卷改编)下列函数f(x)中,满足“对任意x1,x2(0,),当x1f(x2)”的是_f(x)f(x)(x1)2 f(x)exf(x)ln(x1)解析:对任意的x1,x2(0,),当x1f(x2),f(x)在(0,)上为减函数答案:2函数f(x)(xR)的图象如右图所示,则函数g(x)f(logax)(0a1)的单调减区间是_解析:0a1,ylogax为减函数,logax0,时,g(x)为减函数由0logaxx1.答案:,1(或(,1)3函数y 的值域是_解析:令x4sin2,0,ysincos2sin(),1y2.答案:1,24已知函数f(x)|ex|(aR)在区间0,1上单调递增,则实数a的取值范围_解析:当a0,且ex0时,只需满足e00即可,则1a0时,f(x)ex,则满足f(x)ex0在x0,1上恒成立只需满足a(e2x)min成立即可,故a1,综上1a1.答案:1a15(原创题)如果对于函数f(x)定义域内任意的x,都有f(x)M(M为常数),称M为f(x)的下界,下界M中的最大值叫做f(x)的下确界,下列函数中,有下确界的所有函数是_f(x)sinx;f(x)lgx;f(x)ex;f(x)解析:sinx1,f(x)sinx的下确界为1,即f(x)sinx是有下确界的函数;f(x)lgx的值域为(,),f(x)lgx没有下确界;f(x)ex的值域为(0,),f(x)ex的下确界为0,即f(x)ex是有下确界的函数;f(x)的下确界为1.f(x)是有下确界的函数答案:6已知函数f(x)x2,g(x)x1.(1)若存在xR使f(x)bg(x),求实数b的取值范围;(2)设F(x)f(x)mg(x)1mm2,且|F(x)|在0,1上单调递增,求实数m的取值范围.解:(1)xR,f(x)bg(x)xR,x2bxb0b4.(2)F(x)x2mx1m2,m24(1m2)5m24,当0即m时,则必需m0.当0即m时,设方程F(x)0的根为x1,x2(x1x2),若1,则x10.m2.若0,则x20,1m0.4a4.答案:40)在(,)上是单调增函数,则实数a的取值范围_解析:f(x)x(a0)在(,)上为增函数,0a.答案:(0,4(2009年高考陕西卷改编)定义在R上的偶函数f(x),对任意x1,x20,)(x1x2),有0,则下列结论正确的是_f(3)f(2)f(1)f(1)f(2)f(3) f(2)f(1)f(3)f(3)f(1)f(2)解析:由已知0,得f(x)在x0,)上单调递减,由偶函数性质得f(2)f(2),即f(3)f(2)f(1)答案:5(2010年陕西西安模拟)已知函数f(x)满足对任意x1x2,都有0成立,则a的取值范围是_解析:由题意知,f(x)为减函数,所以解得0a.6(2010年宁夏石嘴山模拟)函数f(x)的图象是如下图所示的折线段OAB,点A的坐标为(1,2),点B的坐标为(3,0),定义函数g(x)f(x)(x1),则函数g(x)的最大值为_解析:g(x)当0x0,a1)在区间(0,)内恒有f(x)0,则f(x)的单调递增区间为_解析:令2x2x,当x(0,)时,(0,1),而此时f(x)0恒成立,0a0,即x0或x,得0x1时,f(x)0.(1)求f(1)的值;(2)判断f(x)的单调性;(3)若f(3)1,解不等式f(|x|)0,代入得f(1)f(x1)f(x1)0,故f(1)0.(2)任取x1,x2(0,),且x1x2,则1,由于当x1时,f(x)0,所以f()0,即f(x1)f(x2)0,因此f(x1)f(x2),所以函数f(x)在区间(0,)上是单调递减函数(3)由f()f(x1)f(x2)得f()f(9)f(3),而f(3)1,所以f(9)2.由于函数f(x)在区间(0,)上是单调递减函数,由f(|x|)9,x9或x9或x912已知:f(x)log3,x(0,),是否存在实数a,b,使f(x)同时满足下列三个条件:(1)在(0,1上是减函数,(2)在1,)上是增函数,(3)f(x)的最小值是1.若存在,求出a、b;若不存在,说明理由解:f(x)在(0,1上是减函数,1,)上是增函数,x1时,f(x)最小,log31.即ab2.设0x1x21,则f(x1)f(x2)即恒成立由此得0恒成立又x1x20,x1x20,x1x2b0恒成立,b1.设1x3x4,则f(x3)f(x4)恒成立0恒成立x3x40,x3x40,x3x4b恒成立b1.由b1且b1可
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年临沂市罗庄区教育系统部分事业单位公开招聘教师(43名)考前自测高频考点模拟试题及完整答案详解1套
- 2025北京中国音乐学院第一批招聘10人模拟试卷及答案详解(新)
- 2025辽宁沈阳汽车有限公司招聘8人考前自测高频考点模拟试题附答案详解(典型题)
- 2025年航空航天科普知识竞赛试卷带答案
- 宁夏公务员考试《行测》真题模拟试题及答案解析
- 2025年国家公考申论题行政执法及参考答案
- 2025广西南宁市峙村河水库管理所编制外工作人员招聘1人考前自测高频考点模拟试题及答案详解一套
- 2025春季四川攀枝花市人民政府办公室下属事业单位人才引进考核招聘2人模拟试卷及答案详解(各地真题)
- 2025昆明市嵩明县人民医院招聘编外太平间专职管理人员(1人)模拟试卷及答案详解(名师系列)
- 2025福建省晋江圳源环境科技有限责任公司招聘6人考前自测高频考点模拟试题及参考答案详解
- 2025年高考成人政治试题及答案
- 2025年护理质控标准题库及答案
- 2025年农作物植保员岗位技术基础知识考试题库附含答案
- 2025年长宁储备人才真题及答案
- 光子嫩肤课件讲解
- 人力资源中薪酬管理案例分析题及答案
- 采购业务审计培训
- 2025-2026学年冀美版(2024)小学美术二年级上册(全册)教学设计(附目录P284)
- 服装色彩构成课件
- 化工仪表检修与维护课件
- 2025年华为软件开发工程师招聘面试题库及答案解析
评论
0/150
提交评论