EViews计量经济学实验报告-多重共线性的诊断与修正的讨论_第1页
EViews计量经济学实验报告-多重共线性的诊断与修正的讨论_第2页
EViews计量经济学实验报告-多重共线性的诊断与修正的讨论_第3页
EViews计量经济学实验报告-多重共线性的诊断与修正的讨论_第4页
EViews计量经济学实验报告-多重共线性的诊断与修正的讨论_第5页
已阅读5页,还剩6页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

实验题目 多重共线性的诊断与修正 一、实验目的与要求:要求目的:1、对多元线性回归模型的多重共线性的诊断; 2、对多元线性回归模型的多重共线性的修正。二、实验内容根据书上第四章引子“农业的发展反而会减少财政收入”,19782007年的财政收入,农业增加值,工业增加值,建筑业增加值等数据,运用EV软件,做回归分析,判断是否存在多重共线性,以及修正。三、实验过程:(实践过程、实践所有参数与指标、理论依据说明等)(一)模型设定及其估计经分析,影响财政收入的主要因素,除了农业增加值,工业增加值,建筑业增加值以外,还可能与总人口等因素有关。研究“农业的发展反而会减少财政收入”这个问题。设定如下形式的计量经济模型:=+其中,为财政收入CS/亿元;为农业增加值NZ/亿元;为工业增加值GZ/亿元;为建筑业增加值JZZ/亿元;为总人口TPOP/万人;为最终消费CUM/亿元;为受灾面积SZM/千公顷。图1: 19782007年财政收入及其影响因素数据年份财政收入CS/亿元农业增加值NZ/亿元工业增加值GZ/亿元建筑业增加值JZZ/亿元总人口TPOP/万人最终消费CUM/亿元受灾面积SZM/千公顷19781132.31027.51607138.2962592239.15079019791146.41270.21769.7143.8975422633.73937019801159.91371.61996.5195.5987053007.94452619811175.81559.52048.4207.13361.53979019821212.31777.42162.3220.73714.833130198313671978.42375.6270.64126.43471019841642.92316.12789316.74846.33189019852004.82564.43448.7417.95986.344365198621222788.73967525.76821.84714019872199.432334585.8665.87804.64209019882357.23865.45777.28109839.55087019892664.94265.9648479411164.24699119902937.150626858859.412090.53847419913149.485342.28087.11015.114091.95547219923483.375866.610284.5141517203.35133319934348.956963.8141882266.521899.94882919945218.19572.719480.72964.729242.25504319956242.212135.824950.63728.836748.24582119967407.9914015.429447.64387.443919.54698919978651.1414441.932921.44621.648140.65342919989875.9514817.634018.44985.851588.250145199911444.081477035861.55172.155636.949981200013395.2314944.7400365522.36151654688200116386.0415781.343580.65931.766878.352215200218903.641653747431.36465.571691.247119200321715.2517381.754945.57490.877449.554506200426396.4721412.7652108694.387032.937106200531649.292242076912.910133.896918.138818200638760.22404091310.911851.1.341091200751321.7828095.214014.1.648992利用EV软件,生成、等数据,采用这些数据对模型进行OLS回归。(二)诊断多重共线性1、双击“Eviews”,进入主页。输入数据:点击主菜单中的File/Open /EV WorkfileExcel多重共线性的数据.xls ;2、在EV主页界面的窗口,输入“ls y c x2 x3 x4 x5 x6 x7”,按“Enter”.出现OLS回归结果,图2: 图2: OLS 回归结果Dependent Variable: YMethod: Least SquaresDate: 10/12/10 Time: 17:07Sample: 1978 2007Included observations: 30VariableCoefficientStd. Errort-StatisticProb.C-6646.6946454.156-1.0.3138X2-0.0.-2.0.0074X.0001X4-2.2.-1.0.1963X.2653X6-0.0.-0.0.5688X.8306R-squared0.Mean dependent var10049.04Adjusted R-squared0.S.D. dependent var12585.51S.E. of regression1041.849Akaike info criterion16.93634Sum squared residSchwarz criterion17.26329Log likelihood-247.0452F-statistic701.4747Durbin-Watson stat2.Prob(F-statistic)0.由此可见,该模型的可决系数为0.995,修正的可决系数为0.993,模型拟和很好,F统计量为701.47,模型拟和很好,回归方程整体上显著。但是当=0.05时,=2.069,不仅X4、X5、X6、X7的系数t检验不显著,而且X2、X4、X6系数的符号与预期相反,这表明很可能存在严重的多重共线性。(即除了农业增加值、工业增加值外,其他因素对财政收入的影响都不显著,且农业增加值、建筑业增加值、最终消费的回归系数还是负数,这说明很可能存在严重的多重共线性。)3、计算各解释变量的相关系数:在Workfile窗口,选择X2、X3、X4、X5、X6、X7数据,点击“Quick”Group StatisticsCorrelationsOK,出现相关系数矩阵,如图3:图3: 相关系数矩阵X2X3X4X5X6X7X210.1470.97890.67450.46670.2465X30.14710.31880.87580.17840.6215X40.97890.318810.80510.15960.4353X50.67450.87580.805110.69790.8787X60.46670.17840.15960.697910.1582X70.24650.62150.43530.87870.15821由相关系数矩阵可以看出,各解释变量相互之间的相关系数较高,特别是农业增加值、工业增加值、建筑业增加值、最终消费之间,相关系数都在0.8以上。这表明模型存在着多重共线性。(三)修正多重共线性1、采用逐步回归法,去检验和解决多重共线性问题。分别作Y对X2、X3、X4、X5、X6、X7的一元回归,结果如下图4:在EV主页界面的窗口,输入“ls y c x2”,“回车键”。Dependent Variable: YMethod: Least SquaresDate: 10/12/10 Time: 17:49Sample: 1978 2007Included observations: 30VariableCoefficientStd. Errort-StatisticProb.C-4086.5441463.091-2.0.0093X03980.0000R-squared0.Mean dependent var10049.04Adjusted R-squared0.S.D. dependent var12585.51S.E. of regression5025.770Akaike info criterion19.94689Sum squared resid7.07E+08Schwarz criterion20.04030Log likelihood-297.2033F-statistic153.8588Durbin-Watson stat0.Prob(F-statistic)0.依次如上推出X3、X4、X5、X6、X7的一元回归。综上所述,结果如下图4:图4.一元回归估计结果变量参数估计值.0.0.t统计量12.4039828.9016822.677336.18.1289...-0.2、其中,加入的最大,以为基础,顺次加入其他变量逐步回归。结果如下图5:Dependent Variable: YMethod: Least SquaresDate: 10/13/10 Time: 01:27Sample: 1978 2007Included observations: 30VariableCoefficientStd. Errort-StatisticProb.C1976.086388.24135.0.0000X2-1.0.-10.504860.0000X00560.0000R-squared0.Mean dependent var10049.04Adjusted R-squared0.S.D. dependent var12585.51S.E. of regression1041.474Akaike info criterion16.82930Sum squared residSchwarz criterion16.96942Log likelihood-249.4395F-statistic2103.946Durbin-Watson stat1.Prob(F-statistic)0.依照上面,在顺次加入X4、X5、X6、X7,进行逐步回归。综合结果如下图5:图5.加入新变量的回归结果(一)变量X2X3X4X5X6X7X3,X2-1.0.0.(-10.50486)(25.00056)X3,X41.65227-9.0.(11.46367)(-8.)X3,X50.-0.0.98301(26.29703)(-5.)X3,X60.-0.0.(11.18199)(-5.)X3,X70.-0.0.(30.62427)(-2.)经比较,新加入的方程= 0. ,改进最大, 但是得系数为负,这显然不符题意。在的基础上分别加入其他变量后发现,的系数都为负,与预期估计违背。因此这些变量都会引起严重的多重共线性,全部剔除,只保留。修正的回归结果为:Dependent Variable: YMethod: Least SquaresDate: 10/12/10 Time: 17:50Sample: 1978 2007Included observations: 30VariableCoefficientStd. Errort-StatisticProb.C-1075.289570.5337-1.0.0699X01680.0000R-squared0.Mean dependent var10049.04Adjusted R-squared0.S.D. dependent var12585.51S.E. of regression2306.678Akaike info criterion18.38935Sum squared resid1.49E+08Schwarz criterion18.48276Log likelihood-273.8402F-statistic835.3074Durbin-Watson stat0.Prob(F-statistic)0.= -1075.289 + 0.(-1.) (28.90168)= 0. =0. F=835.3074这说明在其他因素不变的情况下,工业增加值每增加1亿元,财政收入平均增加0.亿元。四、实践结果报告: 为研究“农业的发展反而会减少财政收入”的问题,根据19782007年的财政收入,农业增加值,工业增加值,建筑业增加值等数据,运用EV软件,做回归分析,判断是否存在多重共线性,以及修正。最后修正的回归结果为:= -1075.289 + 0.(-1.) (28.90168)= 0. =0. F=835.3074这说明在其他因素不变的情况下,工业增加值每增加1亿元,财政收入平均增加0.亿元。可决系数为0.,较高,说明模型拟合优度高;F值为835.3074,说明整个方程显著;斜率系数的t值28.90168,大于t统计量,t检验显著,符合题意。逐步回归后的结果虽然实现了减轻多重共线性的目的,但反映农业增加值,建筑业增加值的X2,X3等也一并从模型中剔除出去了,可能会带来设定偏误,这是在使用逐步回归时需要注意的问题。附加:1、 分别作Y对X2、X3、X4、X5、X6、X7的一元回归,结果如下:ls y c x2Dependent Variable: YMethod: Least SquaresDate: 10/12/10 Time: 17:49Sample: 1978 2007Included observations: 30VariableCoefficientStd. Errort-StatisticProb.C-4086.5441463.091-2.0.0093X03980.0000R-squared0.Mean dependent var10049.04Adjusted R-squared0.S.D. dependent var12585.51S.E. of regression5025.770Akaike info criterion19.94689Sum squared resid7.07E+08Schwarz criterion20.04030Log likelihood-297.2033F-statistic153.8588Durbin-Watson stat0.Prob(F-statistic)0.ls y c x3Dependent Variable: YMethod: Least SquaresDate: 10/12/10 Time: 17:50Sample: 1978 2007Included observations: 30VariableCoefficientStd. Errort-StatisticProb.C-1075.289570.5337-1.0.0699X01680.0000R-squared0.Mean dependent var10049.04Adjusted R-squared0.S.D. dependent var12585.51S.E. of regression2306.678Akaike info criterion18.38935Sum squared resid1.49E+08Schwarz criterion18.48276Log likelihood-273.8402F-statistic835.3074Durbin-Watson stat0.Prob(F-statistic)0.ls y c x4Dependent Variable: YMethod: Least SquaresDate: 10/12/10 Time: 17:50Sample: 1978 2007Included observations: 30VariableCoefficientStd. Errort-StatisticProb.C-1235.177727.9896-1.0.1008X77330.0000R-squared0.Mean dependent var10049.04Adjusted R-squared0.S.D. dependent var12585.51S.E. of regression2910.486Akaike info criterion18.85437Sum squared resid2.37E+08Schwarz criterion18.94778Log likelihood-280.8155F-statistic514.2614Durbin-Watson stat0.Prob(F-statistic)0.ls y c x5 Dependent Variable: YMethod: Least SquaresDate: 10/12/10 Time: 17:51Sample: 1978 2007Included observations: 30VariableCoefficientStd. Errort-StatisticProb.C-86420.4215618.35-5.0.0000X.0000R-squared0.Mean dependent var10049.04Adjusted R-squared0.S.D. dependent var12585.51S.E. of regression8310.188Akaike info criterion20.95269Sum squared resid1.93E+09Schwarz criterion21.04611Log likelihood-312.2904F-statistic38.51474Durbin-Watson stat0.Prob(F-statistic)0.ls y c x6Dependent Variable: YMethod: Least SquaresDate: 10/12/10 Time: 17:51Sample: 1978 2007Included observations: 30VariableCoefficientStd. Errort-StatisticProb.C-2026.867934.3495-2.0.0387X28950.0000R-squared0.Mean dependent var10049.04Adjusted R-squared0.S.D. dependent var12585.51S.E. of regression3588.750Akaike info criterion19.27334Sum squared resid3.61E+08Schwarz criterion19.36675Log likelihood-287.1000F-statistic328.6589Durbin-Watson stat0.Prob(F-statistic)0.ls y c x7Dependent Variable: YMethod: Least SquaresDate: 10/12/10 Time: 18:36Sample: 1978 2007Included observations: 30VariableCoefficientStd. Errort-StatisticProb.C4934.61616135.440.0.7620X.7511R-squared0.Mean dependent var10049.04Adjusted R-squared-0.S.D. dependent var12585.51S.E. of regression12784.87Akaike info criterion21.81425Sum squared resid4.58E+09Schwarz criterion21.90767Log likelihood-325.2138F-statistic0.Durbin-Watson stat0.Prob(F-statistic)0.2、 以为基础,顺次加入其他变量逐步回归。X3、X2:Dependent Variable: YMethod: Least SquaresDate: 10/13/10 Time: 01:27Sample: 1978 2007Included observations: 30VariableCoefficientStd. Errort-StatisticProb.C1976.086388.24135.0.0000X2-1.0.-10.504860.0000X00560.0000R-squared0.Mean dependent var10049.04Adjusted R-squared0.S.D. dependent var12585.51S.E. of regression1041.474Akaike info criterion16.82930Sum squared residSchwarz criterion16.96942Log likelihood-249.4395F-statistic2103.946Durbin-Watson stat1.Prob(F-statistic)0.X3、X4:Dependent Variable: YMethod: Least SquaresDate: 10/13/10 Time: 01:27Sample: 1978 2007Included observations: 30VariableCoefficientStd. Errort-StatisticProb.C-241.4297318.0985-0.0.4544X63670.0000X4-9.1.-8.0.0000R-squared0.Mean dependent var10049.04Adjusted R-squared0.S.D. dependent var12585.51S.E. of regression1223.617Akaike info criterion17.15165Sum squared residSchwarz criterion17.29177Log likelihood-254.2747F-statistic1520.477Durbin-Watson stat1.Prob(F-statistic)0.X3、X5:Dependent Variable: YMethod: Least SquaresDate: 10/13/10 Time: 01:28Sample: 1978 2007Included observations: 30VariableCoefficientStd. Errort-StatisticProb.C27090.895304.5145.0.0000X97030.0000X5-0.0.-5.0.0000R-squared0.Mean dependent var10049.04Adjusted R-squared0.S.D. dependent var12585.51S.E. of regression1640.462Akaike info criterion17.73798Sum squared resid

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论