




已阅读5页,还剩51页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
一、偏导数的定义及其计算法,第二节偏导数和全微分,偏导数的概念可以推广到二元以上函数,如在处,解,证,解,例,证,有关偏导数的几点说明:,、,、,求分界点、不连续点处的偏导数要用定义求;,解,、偏导数存在与连续的关系,?,但函数在该点处并不连续.,偏导数存在连续.,一元函数中在某点可导连续,,多元函数中在某点偏导数存在连续,,4、偏导数的几何意义,如图,几何意义:,纯偏导,混合偏导,定义:二阶及二阶以上的偏导数统称为高阶偏导数.,二、高阶偏导数,解,解,问题:,混合偏导数都相等吗?具备怎样的条件才相等?,解,课堂思考题,思考题解答,不能.,例如,解,证,原结论成立,解,不存在,解,解,解,由一元函数微分学中增量与微分的关系得,三、全微分的定义,全增量的概念,全微分的定义,事实上,四、可微的条件,证,总成立,同理可得,一元函数在某点的导数存在微分存在,多元函数的各偏导数存在全微分存在,?,例如,,则,当时,,说明:多元函数的各偏导数存在并不能保证全微分存在,,证,(依偏导数的连续性),同理,习惯上,记全微分为,全微分的定义可推广到三元及三元以上函数,通常我们把二元函数的全微分等于它的两个偏微分之和这件事称为二元函数的微分符合叠加原理,叠加原理也适用于二元以上函数的情况,解,所求全微分,解,解,所求全微分,证,多元函数连续、可导、可微的关系,证,令,则,同理,不存在.,证,五、复合函数的为分法:链式法则,上定理的结论可推广到中间变量多于两个的情况.,如,以上公式中的导数称为全导数.,解,上定理还可推广到中间变量不是一元函数而是多元函数的情况:,链式法则如图示
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 高中国庆课件
- 高中化学电池改造课件
- 高三下期家长会课件
- 高一化学反应与电能课件
- 离婚谈判实战技巧三大策略专业调解合同
- 电动公交充电桩场地租赁及维护保养合同
- 农业粮食仓库租赁合同范本(含仓储设施维护)
- 私人商铺租赁合同范本:包含商铺租赁税费承担条款
- 广告创意版权代理合同
- 骨骼健康养生知识培训总结
- 2025天津津南国有资本投资运营集团有限公司及实控子公司招聘工作人员招聘5人考试模拟试题及答案解析
- 营造清朗空间+课件-2025-2026学年(统编版2024)道德与法治八年级上册
- saas货运管理办法
- 2025年遴选财务岗考试题及答案
- excel操作考试题及答案
- 项目安全管理实施细则
- DBJ51T 196-2022 四川省智慧工地建设技术标准
- 五四制青岛版2022-2023五年级科学上册第一单元第1课《细胞》课件(定稿)
- 律师事务所合同纠纷法律诉讼服务方案
- 高标准农田建设项目施工组织设计 (6)
- 定稿咳嗽咳痰咯血
评论
0/150
提交评论