三角函数解三角形综合_第1页
三角函数解三角形综合_第2页
三角函数解三角形综合_第3页
三角函数解三角形综合_第4页
三角函数解三角形综合_第5页
已阅读5页,还剩33页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1.已知函数f(x)=sin(x)2sin2+m(0)的最小正周期为3,当x0,时,函数f(x)的最小值为0(1)求函数f(x)的表达式;(2)在ABC中,若f(C)=1,且2sin2B=cosB+cos(AC),求sinA的值解:()依题意:函数所以,所以f(x)的最小值为m依题意,m=0(),在RtABC中,0sinA1,2.已知函数(其中0),若f(x)的一条对称轴离最近的对称中心的距离为(I)求y=f(x)的单调递增区间;()在ABC中角A、B、C的对边分别是a,b,c满足(2ba)cosC=ccosA,则f(B)恰是f(x)的最大值,试判断ABC的形状【解答】解:(),=,f(x)的对称轴离最近的对称中心的距离为,T=,=1,得:,函数f(x)单调增区间为;()(2ba)cosC=ccosA,由正弦定理,得(2sinBsinA)cosC=sinCcosA2sinBcosC=sinAcosC+sinCcosA=sin(A+C),sin(A+C)=sin(B)=sinB0,2sinBcosC=sinB,sinB(2cosC1)=0,0C,根据正弦函数的图象可以看出,f(B)无最小值,有最大值ymax=1,此时,即,ABC为等边三角形3.已知函数f(x)=sinx+cos(x+)+cos(x)1(0),xR,且函数的最小正周期为:(1)求函数f(x)的解析式;(2)在ABC中,角A、B、C所对的边分别是a、b、c,若f(B)=0, =,且a+c=4,试求b的值【解答】解:(1)f(x)=sinx+cos(x+)+cos(x)1=T=,=2则f(x)=2sin(2x)1;(2)由f(B)=0,得或,kZB是三角形内角,B=而=accosB=,ac=3又a+c=4,a2+c2=(a+c)22ac=1623=10b2=a2+c22accosB=7则b=4.已知函数(1)求f(x)单调递增区间;(2)ABC中,角A,B,C的对边a,b,c满足,求f(A)的取值范围【解答】解:(1)f(x)=+sin2x=sin2xcos2x=sin(2x),令2k2x2k+,kZ,得到+kx+k,kZ,则f(x)的增区间为+k, +k(kZ);(2)由余弦定理得:cosA=,即b2+c2a2=2bccosA,代入已知不等式得:2bccosAbc,即cosA,A为ABC内角,0A,f(A)=sin(2A),且2A,f(A),则f(A)的范围为(,)5.在ABC中,内角A,B,C的对边分别是a,b,c,已知A为锐角,且bsinAcosC+csinAcosB=a(1)求角A的大小;(2)设函数f(x)=tanAsinxcosxcos2x(0),其图象上相邻两条对称轴间的距离为,将函数y=f(x)的图象向左平移个单位,得到函数y=g(x)图象,求函数g(x)在区间,上值域解:(1)bsinAcosC+csinAcosB=a,由正弦定理可得:sinBsinAcosC+sinCsinAcosB=sinA,A为锐角,sinA0,sinBcosC+sinCcosB=,可得:sin(B+C)=sinA=,A=(2)A=,可得:tanA=,f(x)=sinxcosxcos2x=sin2xcos2x=sin(2x),其图象上相邻两条对称轴间的距离为,可得:T=2=,解得:=1,f(x)=sin(2x),将函数y=f(x)的图象向左平移个单位,得到图象对应的函数解析式为y=g(x)=sin2(x+)=sin(2x+),x,可得:2x+,g(x)=sin(2x+),16.已知向量,向量,函数()求f(x)单调递减区间;()已知a,b,c分别为ABC内角A,B,C的对边,A为锐角,c=4,且f(A)恰是f(x)在上的最大值,求A,b,和ABC的面积S解:()=+1+sin2x+=sin2xcos2x+2=sin(2x)+2,所以:f(x)的单调递减区间为:() 由(1)知:,时,由正弦函数图象可知,当时f(x)取得最大值3,(7分),(8分)由余弦定理,a2=b2+c22bccosA,得:,b=2,(10分)(12分)7.已知函数.()作出在一个周期内的图象;()分别是中角的对边,若,求的面积.利用“五点法”列表如下:001004分画出在上的图象,如图所示:()由(),在中,所以.由正弦定理可知,即,所以,9分又,.因此的面积是.12分8.已知函数f(x)=(m+2cos2x)cos(2x+)为奇函数,且f()=0,其中mR,(0,)()求函数f(x)的图象的对称中心和单调递增区间()在ABC中,角A,B,C的对边分别是a,b,c,且f(+)=,c=1,ab=2,求ABC的周长【解答】解:()f()=(m+1)sin=0,(0,)sin0,m+1=0,即m=1,f(x)为奇函数,f(0)=(m+2)cos=0,cos=0,=故f(x)=(1+2cos2x)cos(2x+)=cos2x(sin2x)=sin4x,由4x=k,kZ得:x=k,kZ,故函数f(x)的图象的对称中心坐标为:(k,0),kZ,由4x+2k, +2k,kZ得:x+k, +k,kZ,即函数f(x)的单调递增区间为+k, +k,kZ,()f(+)=sin(2C+),C为三角形内角,故C=,c2=a2+b22abcosC=,c=1,ab=2,a+b=2+,a+b+c=3+,即ABC的周长为3+9.已知向量=(sin,1),=(cos,cos2),记f(x)=()若f(x)=1,求cos(x+)的值;()在锐角ABC中,角A,B,C的对边分别是a,b,c,且满足(2ac)cosB=bcosC,求f(2A)的取值范围【解答】解:()向量=(sin,1),=(cos,cos2),记f(x)=sincos+cos2=sin+cos+=sin()+,因为f(x)=1,所以sin()=,所以cos(x+)=12sin2()=,()因为(2ac)cosB=bcosC,由正弦定理得(2sinAsinC)cosB=sinBcosC所以2sinAcosBsinCcosB=sinBcosC所以2sinAcosB=sin(B+C)=sinA,sinA0,所以cosB=,又0B,所以B=,则A+C=,即A=C,又0C,则A,得A+,所以sin(A+)1,又f(2A)=sin(A+),所以f(2A)的取值范围(10.已知向量,函数f(x)=(1)求函数f(x)的最小正周期及在上的值域;(2)在ABC中,若f(A)=4,b=4,ABC的面积为,求a的值【解答】解:(1)向量,函数f(x)=2+sin2x+2cos2x=3+sin2x+cos2x=3+2sin(2x+),可得函数f(x)的最小正周期为=,x,即有2x+(,可得sin(2x+)(,1,则在上的值域为(2,5;(2)在ABC中,若f(A)=4,b=4,ABC的面积为,可得3+2sin(2A+)=4,即sin(2A+)=,由0A,可得2A+,可得2A+=,即A=,由=bcsinA=4csin=c,解得c=1,则a2=b2+c22bccosA=16+18=13,即a=11.已知函数f(x)=2sin(x+)cosx(1)若0x,求函数f(x)的值域;(2)设ABC的三个内角A,B,C所对的边分别为a,b,c,若A为锐角且f(A)=,b=2,c=3,求cos(AB)的值【解答】解:(1)f(x)=2sin(x+)cosx=(sinx+cosx)cosx=sinxcosx+cos2x=sin2x+cos2x+=sin(2x+)+;由得,即函数f(x)的值域为;(2)由,得,又由,解得;在ABC中,由余弦定理a2=b2+c22bccosA=7,解得;由正弦定理,得,ba,BA,cos(AB)=cosAcosB+sinAsinB=12.已知向量(xR),设函数f(x)=1(1)求函数f(x)的单调增区间;(2已知锐角ABC的三个内角分别为A,B,C,若f(A)=2,B=,边AB=3,求边BC【解答】解:由已知得到函数f(x)=1=2cos2x+2sinxcosx1=cos2x+sin2x=2cos(2x);所以(1)函数f(x)的单调增区间是(2x)2k,2k,即xk,k+,kZ;已升级到最新版(2)已知锐角ABC的三个内角分别为A,B,C,f(A)=2,则2cos(2A)=2,所以A=,又B=,边AB=3,所以由正弦定理得,即,解得BC=13.(1)求函数的单调递减区间;(2)在中,角的对边分别为,若,的面积为,求a的最小值. 试题解析:(1),令,解得,的单调递减区间为().14.已知f(x)=,其中=(2cosx,sin2x),=(cosx,1),xR(1)求f(x)的单调递减区间;(2)在ABC中,角A,B,C所对的边分别为a,b,c,f(A)=1,a=,且向量=【解答】解:(1)由题意知3分y=cosx在a2上单调递减,令,得f(x)的单调递减区间,6分(2),又,即,8分,由余弦定理得a2=b2+c22bccosA=(b+c)23bc=7.10分因为向量与共线,所以2sinB=3sinC,由正弦定理得2b=3cb=3,c=2.12 分15.已知函数f(x)=2sin(x+)cosx(1)若0x,求函数f(x)的值域;(2)设ABC的三个内角A,B,C所对的边分别为a,b,c,若A为锐角且f(A)=,b=2,c=3,求cos(AB)的值【解答】解:(1)f(x)=2sin(x+)cosx=(sinx+cosx)cosx=sinxcosx+cos2x=sin2x+cos2x+=sin(2x+)+;由得,即函数f(x)的值域为;(2)由,得,又由,解得;在ABC中,由余弦定理a2=b2+c22bccosA=7,解得;由正弦定理,得,ba,BA,cos(AB)=cosAcosB+sinAsinB=16.在ABC中,角A,B,C所对的边分别为a,b,c,f(x)=2sin(xA)cosx+sin(B+C)(xR),函数f(x)的图象关于点(,0)对称()当x(0,)时,求f(x)的值域;()若a=7且sinB+sinC=,求ABC的面积【解答】解:()f(x)=2sin(xA)cosx+sin(B+C)=2(sinxcosAcosxsinA)cosx+sinA=2sinxcosxcosA2cos2xsinA+sinA=sin2xcosAcos2xsinA=sin(2xA),由于函数f(x)的图象关于点(,0)对称,则f()=0,即有sin(A)=0,由0A,则A=,则f(x)=sin(2x),由于x(0,),则2x(,),即有sin(2x)1则值域为(,1;()由正弦定理可得=,则sinB=b,sinC=c,sinB+sinC=(b+c)=,即b+c=13,由余弦定理可得a2=b2+c22bccosA,即49=b2+c2bc=(b+c)23bc,即有bc=40,则ABC的面积为S=bcsinA=40=1017.已知函数f(x)=2sinxcosx3sin2xcos2x+3(1)当x0,时,求f(x)的值域;(2)若ABC的内角A,B,C的对边分别为a,b,c,且满足=, =2+2cos(A+C),求f(B)的值【解答】解:(1)f(x)=2sinxcosx3sin2xcos2x+3=sin2x3+3=sin2xcos2x+1=2sin(2x+)+1,x0,2x+,sin(2x+),1,f(x)=2sin(2x+)+10,3;(2)=2+2cos(A+C),sin(2A+C)=2sinA+2sinAcos(A+C),sinAcos(A+C)+cosAsin(A+C)=2sinA+2sinAcos(A+C),sinAcos(A+C)+cosAsin(A+C)=2sinA,即sinC=2sinA,由正弦定理可得c=2a,又由=可得b=a,由余弦定理可得cosA=,A=30,由正弦定理可得sinC=2sinA=1,C=90,由三角形的内角和可得B=60,f(B)=f(60)=218.设函数f(x)=cos(2x)+2cos2x(1)求f(x)的最大值,并写出使f(x)取得最大值时x的集合;(2)求f(x)的单调递增区间;(3)已知ABC中,角A,B,C的对边分别为a,b,c,若f(B+C)=,b+c=2,求a的最小值【解答】解:(1)由三角函数公式化简可得f(x)=cos(2x)+2cos2x=cos2xcos+sin2xsin+2cos2x=cos2xsin2x+1+cos2x=cos2xsin2x+1=cos(2x+)+1,当2x+=2k即x=k(kZ)时,f(x)取得最大值2,此时x的集合为x|x=k,kZ;(2)由2k+2x+2k+2可解得k+xk+,f(x)的单调递增区间为得k+,k+,kZ;(3)由(2)可得f(B+C)=cos(2B+2C+)+1=,cos(2B+2C+)=,由角的范围可得2B+2C+=,变形可得B+C=,A=,由余弦定理可得a2=b2+c22bccosA=b2+c2bc=(b+c)23bc=43bc43()2=1当且仅当b=c=1时取等号,故a的最小值为119.已知函数,xR(1)求函数f(x)的最大值和最小正周期;(2)设ABC的内角A,B,C的对边分别a,b,c,且c=3,f(C)=0,若sin(A+C)=2sinA,求a,b的值【解答】解:(1)(3分),f(x)的最大值为0,最小正周期是(6分)(2)由,可得0C,02C2,sin(A+C)=2sinA,由正弦定理得(9分)由余弦定理得c=39=a2+b2ab由解得,(12分)20.已知向量,设函数.(1)求在上的最值;(2)在中,分别是角的对边,若,的面积为,求的值.;(2).21.已知函数f(x)=sin2x+sin2x(1)求函数f(x)的单调递减区间;(2)在ABC中,角A,B,C的对边分别为a,b,c,若f()=,ABC的面积为3,求a的最小值【解答】解:(1)f(x)=sin2x+sin2x=+sin2x=sin(2x)+,2k+2x2k+,kZ,解得:k+xk+,kZ,函数f(x)的单调递减区间为:k+,k+,kZ(2)f()=,即: sin(2)+=,化简可得:sin(A)=,又A(0,),可得:A(,),A=,解得:A=,SABC=bcsinA=bc=3,解得:bc=12,a=2(当且仅当b=c时等号成立)故a的最小值为222.已知函数f(x)=2sinxcosx+2,xR(1)求函数f(x)的最小正周期和单调递增区间;(2)在锐角三角形ABC中,若f(A)=1,求ABC的面积【解答】解:(1)f(x)=2sinxcosx+=sin2x+=2sin(2x+),函数f(x)的最小正周期为,由2k2x+2k+,(kZ),得,函数f(x)的单调增区间是k,k(kZ),(2)由已知,f(A)=2sin(2A+)=1,sin(2A+)=,0A,2A+=,从而A=,又=,ABC的面积S=23.已知向量=(sinx,1),向量=(cosx,),函数f(x)=(+)(1)求f(x)的最小正周期T;(2)已知a,b,c分别为ABC内角A,B,C的对边,A为锐角,a=2,c=4,且f(A)恰是f(x)在0,上的最大值,求A和b【解答】解:(1)向量=(sinx,1),向量=(cosx,),f(x)=(+)=sin2x+1+sinxcosx+=+1+sin2x+=sin2xcos2x+2=sin(2x)+2,=2,函数f(x)的最小正周期T=;(2)由(1)知:f(x)=sin(2x)+2,x0,2x,当2x=时,f(x)取得最大值3,此时x=,由f(A)=3得:A=,由余弦定理,得a2=b2+c22bccosA,12=b2+164b,即(b2)2=0,b=224.在中,分别是角的对边,且满足.(1)求角的大小;(2)设函数,求函数在区间上的值域.25.已知函数在处取最小值.(1)求的值;(2)在中,分别为内角的对边,已知,求角.试题分析:(1)利用三角恒等变换公式化简函数解析式得,由在处取最小值及查求得;(2)由可得,再由正弦定理求出,从而求出角的值,即可求角. (2)因为,所以,因为角为的内角,所以.又因为,所以由正弦定理,得,也就是,因为,所以或.当时,;当时,.26.已知函数的最小正周期为.(1)求函数在区间上的最大值和最小值;(2)已知分别为锐角三角形中角的对边,且满足,求的面积.答案及解析:26.(1),;(2).试题分析:(1)利用三角恒等变换相关公式化简函数解析式得,由周期为,可求的值,由三角函数性质可求函数的最值.(2)由及正弦定理可求得,从而是求出解的值,由可求出角及角,由正弦定理求出边,即可求三角形面积.27.已知函数()求函数f(x)的单调递增区间;()在ABC中,内角A、B、C的对边分别为a、b、c已知,a=2,求ABC的面积【解答】解:() =sin2xcos+cos2xsin+cos2x=sin2x+cos2x=(sin2x+cos2x)=sin(2x+)令 2k2x+2k+,kz,求得 kxk+,函数f(x)的单调递增区间为k,k+,kz()由已知,可得 sin(2A+)=,因为A为ABC内角,由题意知0A,所以2A+,因此,2A+=,解得A=由正弦定理,得b=,由A=,由B=,可得 sinC=,S=absinC=28.已知函数f(x)=Asin(x+)(A0,0,|,xR),且函数f(x)的最大值为2,最小正周期为,并且函数f(x)的图象过点(,0)(1)求函数f(x)解析式;(2)设ABC的角A,B,C的对边分别为a,b,c,且f()=2,c=,求a+2b的取值范围【解答】解:(1)根据题意得:A=2,=4,即f(x)=2sin(4x+),把(,0)代入得:2sin(+)=0,即sin(+)=0,+=0,即=,则f(x)=2sin(4x);(2)由f()=2sin(C)=2,即sin(C)=1,C=,即C=,由正弦定理得: =2R,即=2R=1,a+2b=2RsinA+4RsinB=sinA+2sinB=sinA+2sin(A)=sinA+2sincosA2cossinA=sinA+cosAsinA=cosA,cosA1,即cosA,a+2b的范围为(,)29.已知函数f(x)=2cos2x+cos(2x+)(1)若f()=+1,0a,求sin2的值;(2)在锐角ABC中,a,b,c分别是角A,B,C的对边;若f(A)=,c=3,ABC的面积SABC=3,求a的值【解答】解:(1)化简可得f(x)=2cos2x+cos(2x+)=1+cos2x+cos2xsin2x=cos2xsin2x+1=cos(2x+)+1,f()=cos(2+)+1=+1,cos(2+)=,0,02+,sin(2+)=,(2)f(x)=cos(2x+)+1,f(A)=cos(2A+)+1=,cos(2A+)=,又A(0,),2A+(,),2A+=,解得A=又c=3,SABC=bcsinA=3,b=4由余弦定理得a2=b2+c22bccosA=13,a=30.已知函数(,),且函数的最小正周期为(1)求函数的解析式;(2)在中,角,所对的边分别为,若,且,求的值【参考答案】(1), 3分又,所以, 5分所以, 6分(2),故,所以,或(),因为是三角形内角,所以9分而,所以, 11分又,所以,所以,所以, 14分31.已知函数.()求的单调递增区间; ()在中,三个内角的对边分别为,已知,且外接圆的半径为,求的值.试题解析:() 2分 = 3分 由Z)得,Z) 5分 的单调递增区间是Z) 7(), 于是 外接圆的半径为, 由正弦定理,得 , 32.在中,分别是角A,B,C的对边,已知,且(1)求的大小;(2)设且的最小正周期为,求在的最大值。试题解析:(1) 又0x A=(2)=+=+= sin(x+)= =2=sin(2x+) 2x+, 时 33.已知函数f(x)=sinxcos(x+)+1(1)求函数f(x)的单调递减区间;(2)在ABC中,a,b,c分别是角A、B、C的对边f(C)=,b=4, =12,求c【解答】解:(1)f(x)=sinx(cosxsinx)+1=sin2x+1=sin(2x+)+令2x+,解得x函数f(x)的单调递减区间是,kZ(2)f(C)=sin(2C+)+=,sin(2C+)=1,C=abcosA=2a=12,a=2由余弦定理得c2=a2+b22abcosC=12+1624=4c=234.在ABC中,角A,B,C的对边分别为a,b,c,已知a2+c2b2=ac,且b=c(1)求角A的大小;(2)设函数f(x)=1+cos(2x+B)cos2x,求函数f(x)的单调递增区间【解答】解:(1)在ABC中,因为,所以在ABC中,因为,由正弦定理可得,所以,故(2)由(1)得=,得即函数f(x)的单调递增区间为35.的三个内角A,B,C所对的边分别为a,b,c,已知(1)当时,求的值;(2)设,求函数的值域. 36.已知函数f(x)=sinx(sinx+cosx)(1)求f(x)的最小正周期和最大值;(2)在锐角三角形ABC中,角A,B,C的对边分别为a,b,c,若f()=1,a=2,求三角形ABC面积的最大值【解答】解:(1)f(x)=sin2x+sinxcosx=cos2x+sin2x=sin(2x)f(x)的最小正周期T=,f(x)的最大值是(2)f()=sin(A)+=1,sin(A)=,A=a2=b2+c22bccosA,12=b2+c2bc,b2+c2=12+bc2bc,bc12S=bc3三角形ABC面积的最大值是337.已知向量=(cos2x, sinx),=(1,),设函数f(x)=()求函数f(x)取得最大值时x取值的集合;()设A,B,C为锐角三角形ABC的三个内角,若cosB=,f(C)=,求sinA的值【解答】解:()向量=(cos2x, sinx),=(1,),函数f(x)=cos2x+(sinx)2=cos2x+sin2x+cos2xsinxcosx=cos2xsin2x+=cos(2x+)+故当cos(2x+)=1时,函数f(x)取得最大值,此时2x+=2k,解得x=k,kZ,故x取值的集合为x|x=k,kZ;()A,B,C为锐角三角形ABC的三个内角,且cosB=,sinB=,又f(C)=cos(2C+)+=,cos(2C+)=,2C+=,解得C=,sinA=sin(B)=cosB+sinB=38.已知向量=(sin2x+2,cosx),=(1,2cosx),设函数f(x)=(1)求f(x)的最小正周期与单调递增区间;(2)在ABC中,a,b,c分别是角A,B,C所对应的边,若f(A)=4,b=1,得面积为,求a的值【解答】解:(1)向量=(sin2x+2,cosx),=(1,2cosx),函数f(x)=sin2x+2+2cos2x=sin2x+cos2x+3=2sin(2x+)+3,=2,T=,令2k2x+2k+,kZ,得到kxk+,kZ,则f(x)的最小正周期为;单调递增区间为k,k+,kZ;(2)由f(A)=4,得到2sin(2A+)+3=4,即sin(2A+)=,2A+=或2A+=,解得:A=0(舍去)或A=,b=1,面积为,bcsinA=,即c=2,由余弦定理得:a2=b2+c22bccosA=1+42=3,则a=39.设ABC的内角A、B、C的对边长分别为a、b、c,设S为AB

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论