




已阅读5页,还剩7页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湘教版SHUXUE七年级下,第3章因式分解,多项式因式分解,主讲:黄亭市镇中学ywm,21等于3乘哪个整数?,2137,x2-1等于x+1乘哪个多项式?,对于整数21与3,有整数7使得2137,我们把3叫作21的一个因数.同理,7也是21的一个因数.,对于多项式x2-1与x+1,有x-1使得,我们把x+1叫作x2-1的一个因式,同理x-1也是x2-1的一个因式,知识准备,一般地,对于两个多项f与g,如果有多项式h使得f=gh,那么我们把g叫作f的一个因式,此时,h也是f的一个因式,把x2-1写成的形式,叫作把x2-1因式分解,一般地,把一个含字母的多项式表示成若干个多项式的乘积的形式,称为把这个多项式因式分解,领悟概念,可以看出,因式分解与整式乘法其实是两种互逆的变形.即,x2-1,(x+1)(x-1),为什么要把一个多项式因式分解呢?,加深理解,万里长城是由砖砌成的.不少房子也是用砖砌成的.因此,砖是基本建筑块之一.,明确关系,类似地,在数学中也经常要寻找那些“基本建筑块”.,例如,在正整数集中,像2,3,5,7,11,13,17,这些大于1的数,它的因数只有1和它自身,称这样的正整数为质数或素数.,素数就是正整数集中的“基本建筑块”:每一个大于1的正整数都能表示成若干个素数的乘积的形式.,例如12=223,30=235,有了式和式,就容易求出12和30的最大公因数为,23=6,,进而很容易把分数约分:分子与分母同除以6,得,同样地,在系数为有理数(或系数为实数)的多项式组成的集合中,也有一些多项式起着“基本建筑块”的作用:,每一个多项式可以表示成若干个这种多项式的乘积的形式,从而为许多问题的解决架起了桥梁.,例如,以后我们要学习的分式的约分,解一元二次方程,解一元二次不等式等,都需要把多项式因式分解.,因式分解还可以在许多实际问题中简化计算.,例1下列各式由左边到右边的变形,哪些是因式分解,哪些不是,为什么?,(1),(2),举例,解(1)是.因为从左边到右边是把多项式a2+2ab+b2表示成了多项式a+b与a+b的积的形式.,(2)不是.因为(m+3)(m-2)+2不是几个多项式乘积的形式.,例2检验下列因式分解是否正确.,(1),(2),(3),举例,分析检验因式分解是否正确,只要看等式右边的几个多项式的乘积与左边的多项式是否相等.,解:因为x(x+y)=x2+xy,所以因式分解x2+xy=x(x+y)正确.,解因为(a-2)(a-3)=a2-5a+6,所以因式分解a2-5a+6=(a-2)(a-3)正确.,解因为(2m-n)(2m+n)=4m2-n22m2-n2,所以因式分解2m2-n2=(2m-n)(2m+n)不正确.,1.求4,6,14的最大公因数.,最大公因数是2.,2.下列各式由左边到右边的变形,哪些是因式分解,哪些不是,为什么?,(1),(2),(3),(4),解不是.因为是整式乘法的过程而不是几个多项式的积的形式.,解是.把多项式2x2y+4xy2表示成了多项式2xy与x+2y的积的形式.,解不是.因为从左边到右边是整式乘法的过程而不是把多项式表示成几个多项式的积的形式.,解是.是把多项式4a2-4a+1表示成了多项式2a-1的平方的形式.,3、下列各式从左边到右边是因式分解的个数有()个。,x2-x=x(x-1)a(a-b)=a2-ab(a+3)(a-3)=a2-9a2-2a+1=a(a-2)+1x2-4x+4=(x-2)2,A1B2C3D4,4、下列各式从左到右变形正确的是(),A-a+b=-(a+b)B(x-y)2=-(y-x)2C(a-b)3=(b-a)3D(m-1)(n-2)=(1-m)(2-n),B,D,2、检验下列因式分解是否正确:,3、若a的值使得x2+4x+a=(x+2)2-1成立,则a=(),4、若多项式x2+px+12可以分解为两个一次式的积的形式,满足条件的整数p的值。(写一个即可),巩固练习,一般地,对于两个多项f与g,如果有多项式h使得f=g
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 银行服务竞赛试题及答案
- 智能风控系统创新创业项目商业计划书
- 2025内蒙古呼伦贝尔农垦集团有限公司校园招聘50人笔试备考参考答案详解
- 2025内蒙古呼伦贝尔林业集团有限公司招聘工作人员5人笔试备考及答案详解(名校卷)
- 教师招聘之《幼儿教师招聘》考前冲刺测试卷讲解附参考答案详解【巩固】
- 押题宝典教师招聘之《小学教师招聘》通关考试题库含完整答案详解【易错题】
- 2025年教师招聘之《小学教师招聘》综合提升练习题及完整答案详解(有一套)
- 教师招聘之《小学教师招聘》综合练习带答案详解(突破训练)
- 押题宝典教师招聘之《幼儿教师招聘》模考模拟试题附答案详解(轻巧夺冠)
- 2025内蒙古呼伦贝尔旅业旅游集团股份公司招聘5人笔试备考及答案详解(有一套)
- 《绿色制造普及绿色生产课件教程》
- 回转窑工艺培训
- 2023年护理质控工作总结
- 河北版初中《信息技术》第二册全册
- 汽车使用与维护 课件 项目二 汽车内部标识识别
- 2024-2025部编人教版2二年级上册语文全程测评试卷(全册10套)
- 2024年江苏大学辅导员考试真题
- 幼儿园教育质量提升的具体策略
- 2025年版高等职业教育专科专业教学标准 560213 融媒体技术与运营
- 新22J01 工程做法图集
- 五防教育主题班会课件
评论
0/150
提交评论