全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
趣谈一道中考试题的12种解法 嘉定区教师进修学院 孙琪斌 嘉定区娄塘学校 朱文娟 图1ABCDEF早在20年前我们就发现有一类题目的证明方法时常成对出现!也就是说假如在点(如图1)可以通过作平行线构造基本图的策略找到一种解决方法,那么在点一定还存在着另外一种添加平行线的方法,即这类题目或者有两种方法或者有4种方法或者有6种方法或者8种方法(证法成对出现).利用这个证法成对出现的猜想研究2009年山东省潍坊市的一道中考题,我们先后找到了12种方法.也就是说在已知图形(图1)的每个点上都找到了两种证法;更令我们开心的是,当我们把这个证法成对的猜想告诉同学们之后,一部分学生居然也能够发现12种方法.下面借助教学片段简述证法成对出现的缘由以及我们给出12种方法的部分生成过程.例题:(2009,山东潍坊)已知:,延长到,使取的中点,连结交于点(如图1)A图2BCDEFG(1)求的值;(2)若,,求的长师:欲求,我们可以尝试添加平行线构造基本图(型图或型图),然后在所形成的型图或型图中寻找与有关的比例式.A图4CDEG图3ADBFG若过点作交的延长线于点(如图2),则可得两个型基本图(图3、图4).B看图3:,. 又,.图5ABCDEFG看图4:,.看图2:,.由此,易得:.本文把这个方法称为方法1.若过点作交的延长线于点(图5),也可以得到两个型基本图(图6、图7).方法2:看图6:,. ,.看图7:图6ABDFG,.看图5:由,易得.图7ACDEG(这时,除了已经自主找到方法的学生之外,我尚没有真正调动起更多学生的兴趣.)师:现在我们回过头来梳理梳理解题思路,这道题的真正价值并不仅仅在于我们过点发现了两种方法,而在于“假如在点通过作平行线可以找到一种解决方法,那么在点一定还存在着另外一种添加平行线的方法.在点一定存在两种证明方法,即证法成对出现”!生1:证法成对出现?什么是证法成对出现?生2:证法成对出现,可能吗?生3:偶然的巧合吧.师:(再次指向添加平行线之后形成的两类基本图-型图、型图),在点为什么存在两种方法呢?或者说我们如何找到存在于点的这两种方法呢?师:同学们只要仔细体会我们在点添加三角形某条边的平行线所构造出的两类基本图(型图与型图),就可以从中找到答案.师:如图1,我们过点作交的延长线于点(如图2),则可得到与三角形一边平行线有关的基本图-型图(图3、图4);过点作交的延长线于点(图5),也可以得到与三角形一边平行线有关的一类基本图-型图(图6、图7).分别研究这两类基本图,我们先后找到了两种解决问题的方法.(有些学生仿佛明白了,脸上呈现出若有所悟之后的喜悦,但更多的同学则依然茫然,)师:大家不妨试一试,看看这种证法成对出现的猜想在点、处是否存在?我现在可以把我的研究结果告诉大家,这道题目我已经找到了12种方法,也就是说图形现有的每个点都存在着两种证明方法!下面就看同学们能不能发现这些方法?(至此,学生的兴趣终于被激发出来了,大家纷纷投入到发现、探究的行列中.)师:(约5分钟后),要不要我提示提示?谁验证了这个证法成对出现的猜想?在哪个点?生1:不要提示.生2:再等一等,我已经找到了一种方法.生3:老师,你过来看看我的这条辅助线是否对不对?师:(又过3分钟后)这样好不好,我们一边交流大家现在已经发现的方法,一边继续探究新的方法.我们先来交流点的两种方法,谁来黑板上讲解自己的发现?就这样,我们一边交流一边研究,一堂课就在这样的交流互动中飞快地结束了后来,同事告诉我们,有些同学居然在接下来的其他课堂上偷偷地做这个数学题下面我们简述这道中考试题的其他方法. 方法3:过点作,交的延长线于点(如图8).易得,.图9ABCDEFG 方法4:过点作,交的延长线于点(如图9).易得,.图8ABCDEFG 分析与反思:过点作交的延长线于点,可生成一个与相关的型图与一个型图(如图8);过点作,交的延长线于点,也可以生成一个相关的型图与一个型图(如图9),这就恰如我们利用分组分解法进行因式分解一样,只要分组之后的小组与小组之间依然存在公因式或可继续应用公式,那么这种分组方法就值得继续尝试下去,只要我们围绕有利于生成与有关的比例式或有利于使用已知条件(如本题中的点是的中点)添加三角形一边的平行线,那么解决问题的方法可能就蕴含其中.方法5:过点作,交点(如图10).图11ABCDEFG图10ABCDEFG易得 ,.方法6:过点作,交点(如图11).易得,.方法7:过点作,交的延长线于点(如图12).易得,,,.设,则,.所以,.方法8:过点作,交的延长线于点(如图13),易得,(1),(2).图13ABCDEFG图12ABCDEFG(2)(1),得 ,所以,.图15ABCDEFG图14ABCDEFG方法9:过点作,交于点(如图14),易得,(1),,即(2)(1)(2),得 ,所以,.方法10:过点作,交于点(如图15),易得,.设,则,,,.方法11:过点作,交于点(如图15),易得,所以,.设,则,,.方法12:过点作,交于点(如图16),易得,.设,则,,,.图15ABCDEFG图16ABCDEFGBDEFAC图17趣味练习1:如图17,中,,求证:.提 示:该题也有12种解法. 趣味练习2:移动图17中的点与点的位置,使他们分别成为、边的中点,容易发现、的交点其实就是的重心,由此,我们可以回归到课本,也可以从这个三角形重心的基本图中发现这类证法成对出现的问题原型以及系列问题变式,如
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 技术项目立项分析工具包
- 基金从业法律法规考试题及答案解析
- 2025年通信行业5G通信技术应用案例分析报告
- 2025年数字货币行业区块链技术应用研究报告及未来发展趋势预测
- 业务合同管理与审批模板
- 安全员a证考试题库查询及答案解析
- 材料探究真题试卷及答案
- 企业行政管理工作手册企业运营版
- 护理礼仪竞赛题库大全及答案解析
- 客户需求分析工具与解决方案模板
- 6.1.1 第1课时 认识立体图形与平面图形 (课件)人教版数学七年级上册
- 混凝土抗渗培训课件教案
- 宪法宪法的基本原则微课堂68课件
- 伊利牛奶门店活动方案
- 2025-2030中国白银行业市场发展分析及发展趋势与投资前景研究报告
- 储罐停用管理制度
- 2025年入团考试时事热点及试题与答案
- 光伏系统设计流程
- TSG D2002-2006燃气用聚乙烯管道焊接技术规则
- 城投公司竞聘试题及答案
- 表演专业-音乐常识知识考试复习题库大全(含答案)
评论
0/150
提交评论