2016高考第一轮复习8空间几何体的结构及其三视图和直观图.ppt_第1页
2016高考第一轮复习8空间几何体的结构及其三视图和直观图.ppt_第2页
2016高考第一轮复习8空间几何体的结构及其三视图和直观图.ppt_第3页
2016高考第一轮复习8空间几何体的结构及其三视图和直观图.ppt_第4页
2016高考第一轮复习8空间几何体的结构及其三视图和直观图.ppt_第5页
免费预览已结束,剩余44页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

,空间几何体的结构及其三视图和直观图,三视图和直观图,表面积和体积,空间几何体,结构特征,柱体的结构特征,锥体的结构特征,台体的结构特征,球体的结构特征,三视图(正视、俯视、侧视图),直观图,斜二测画法,表面积(柱、锥、台、球),体积(柱、锥、台、球),投影,视图,投影线交于一点,投影线平行,直观强、接近实物,不改变原物形状,长对正、高平齐、宽相等,投影的分类,忆一忆知识要点,(1)在已知图形中取互相垂直的x轴、y轴,两轴相交于点O,画直观图时,把它们画成对应的x轴、y轴,两轴相交于点O,且使xOy_(2)已知图形中平行于x轴、y轴的线段,在直观图中分别平行于_(3)已知图形中平行于x轴的线段,在直观图中长度保持不变,平行于y轴的线段,长度变为_(4)在已知图形中过O点作z轴垂直于xOy平面,在直观图中对应的z轴也垂直于xOy平面,已知图形中平行于z轴的线段,在直观图中仍平行于z轴且长度_,忆一忆知识要点,4空间几何体的直观图,画空间几何体的直观图常用_画法,基本步骤是:,斜二测,x轴、y轴,原来的一半,不变,空间几何体的直观图,【例1】已知ABC的直观图ABC是边长为a的正三角形,求原ABC的面积,空间几何体的直观图,【例1】已知ABC的直观图ABC是边长为a的正三角形,求原ABC的面积,对于直观图,除了了解斜二测画法的规则外,还要了解原图形面积S与其直观图面积S之间的关系,能进行相关问题的计算,【1】已知正三角形ABC的边长为a,那么ABC的平面直观图的面积为(),D,一个平面图形的水平放置的斜二测直观图是一个等腰梯形,它的底角为45,两腰和上底边长均为1,则这个平面图形的面积是_.,A,B,C,D,忆一忆知识要点,1多面体的结构特征,平行,平行,长度相等,全等,公共顶点,平行于棱锥底面,相似,2旋转体的结构特征,忆一忆知识要点,其一条直角边所在直线,圆锥底面,平行于,在直线,一边所,直径,主视图,俯视图,侧视图,3空间几何体的三视图,忆一忆知识要点,忆一忆知识要点,空间几何体的三视图是用_得到,这种投影下与投影面平行的平面图形留下的影子与平面图形的形状和大小是_的,三视图包括_、_、_,3空间几何体的三视图,正投影,完全相同,正视图,侧视图,俯视图,长对正,高平齐,主视图,俯视图,侧视图,1台体可以看成是由锥体截得的,但一定强调截面与底面平行2掌握三视图的概念及画法:在绘制三视图时,若相邻两物体的表面相交,表面的交线是它们的分界线在三视图中,分界线和可见轮廓线都用实线画出,被挡住的轮廓线画成虚线并做到“正侧一样高、正俯一样长、俯侧一样宽”3掌握直观图的概念及斜二测画法:在斜二测画法中,要确定关键点及关键线段“平行于x轴的线段平行性不变,长度不变;平行于y轴的线段平行性不变,长度减半”4能够由空间几何体的三视图得到它的直观图;也能够由空间几何体的直观图得到它的三视图,提升空间想象能力,失误与防范,正六棱锥的三视图,忆一忆知识要点,正五棱柱的三视图,主,忆一忆知识要点,正三棱锥的三视图,忆一忆知识要点,侧视图,俯视图,正视图,【4】说出下面的三视图表示的几何体的结构特征.,侧视图,俯视图,正视图,【5】说出下面的三视图表示的几何体的结构特征.,例2.常见的几何体的三视图,例2.常见的几何体的三视图,例2.常见的几何体的三视图,例2.常见的几何体的三视图,例2.常见的几何体的三视图,5(2011浙江)若某几何体的三视图如图所示,则这个几何体的直观图可以是(),D,几何体的三视图,【例2】已知三棱锥的正视图与俯视图如图所示,俯视图是边长为2的正三角形,则该三棱锥的侧视图可能为(),B,三视图识图不准致误,一个空间几何体的三视图如图所示,则这个空间几何体的表面积是_.,这是一个由轴截面割开的半个圆柱与一个球的组合体,其表面积是圆柱的上、下两个底面半圆,圆柱的侧面积的一半、圆柱的轴截面和球的表面积之和,,故这个几何体的表面积是,08,1.本题考查的是三视图和表面积计算问题在由三视图还原为空间几何体的实际形状时,要从三个视图综合考虑,根据三视图的规则,空间几何体的可见轮廓线在三视图中为实线,不可见轮廓线为虚线在还原空间几何体实际形状时一般是以正视图和俯视图为主,结合侧视图进行综合考虑2解本题易出现的错误有:(1)还原空间几何体形状时出错,不能判断出俯视图中的半圆所对应的几何体;(2)计算表面积时漏掉部分表面,如漏掉了半圆柱的截面矩形或是漏掉了上下两个半圆等.,三视图识图不准致误,08,D,4如图所示的几何体的正视图和侧视图可能正确的是(),A,由于几何体是规则的对称几何体,所以其正视图和侧视图是相同的,故选A.,【10】根据以下三视图想象物体原形,可得原几何体的体积是_.,D,C,A,B,V,解:(1)如图所示,V,C,B,D,1.如下图,某几何体的正视图与侧视图都是边长为1的正方形,且体积为0.5,则该几何体的俯视图可以是(),C,C,解:由棱长的两端点和某一端点的射影点可构成一个长方体.,C,A.模块B.模块C.模块D.模块,A,【3】2008重庆,4.(2008广东)将正三棱柱截去三个角(如图1所示),A,B,C分别是GHI三边的中点得到几何体如图2,则该几何体按图2所示方向的侧视图(或称左视图)为(),当三棱锥没有截去三个角时的侧视图如图(1)所示,由此可知截去三个角后的侧视图如图(2)所示.,A,几何体的截面问题,【例4】棱长为2的正四面体的四个顶点都在同一个球面上,若过该球球心的一个截面如图所示,求图中三角形(正四面体的截面)的面积,解决这类问题的关键是准确分析出组合体的结构特征,发挥自己的空间想象能力,把立体图和截面图对照分析,有机结合,找出几何体中的数量关系,为了增加图形的直观性,常常画一个截面圆作为衬托,在棱长为6的正四面体内有一个内切球,(球与正四面体的四个面都相切)经过四面体的一条棱及高作截面如图求内切球的半径,P,E,F,【3】底面直径与高都是1的圆锥的内接正方体的棱长为_.,1空间几何体的结构特征,忆一忆知识要点,相似,平行且相等,全等,公共顶点,平行于底面,组合,截去或挖去,1空间几何体的结构特征,忆一忆知识要点,简单几何体的结构特征,柱体,锥体,台体,球,棱柱,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论