




已阅读5页,还剩15页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
.,1,12.2三角形全等的判定(1)-SSS,九中数学组蔡开平,.,2,学习目标,1.掌握三角形全等的判定定理SSS,并能正确运用“SSS”定理证明三角形全等.2.理解三角形的稳定性.,.,3,导入启趣,连旧带新,1、全等三角形的定义,2、已知ABCABC,问题1:其中相等的边有:,问题2:其中相等的角有:,AB=AB,BC=BC,AC=AC,A=A,B=B,C=C,(全等三角形的对应边相等),(全等三角形的对应角相等),.,4,两个三角形全等,三组对应边、三组对应角六个条件分别相等。,问题1:若两个三角形三组对应边、三组对应角分别相等,则这两个三角形是否一定全等?,两个三角形全等,三组对应边、三组对应角六个条件分别相等。,问题2:两个三角形满足六个条件中的几个条件才能确保这两个三角形全等呢?,聚焦问题,互动探究,.,5,探究一,1.给定一个条件:,(1)一条边,(2)一个角,失败,2.给定两个条件:,(1)两边,(2)一边一角,(3)两角,失败,.,6,千万别泄气哦!,俗话说:失败是成功之母!,我们继续探究:,探究二,给定三个条件:,(1)三边,(2)两边一角,(3)一边两角,(4)三角,动手画一画,.,7,已知:任意ABC,画一个A/B/C/,使A/B/AB,A/C/AC,B/C/=BC,画法:,1.画线段B/C/=BC.,2.分别以B/、C/为圆心,BA、CA为半径画弧,两弧相交于点A/。,3.连结A/B/、A/C/.,A/B/C/就是所要画的三角形.,A/,问:通过实验可以发现什么事实?,画法,.,8,三边对应相等的两个三角形全等。简写为“边边边”或“SSS”,边边边公理:,建构引申,.,9,如何用符号语言来表达呢,在ABC与DEF中,A,B,C,D,E,F,AB=DEAC=DFBC=EF,ABCDEF(SSS),思考:你能用“边边边”解释三角形具有稳定性吗?,.,10,例1已知:如图,AB=AD,BC=DC,求证:ABCADC,A,B,C,D,要证ABCADC,S,S,S,AB=AD,BC=DC,AC=AC,记住公共边是对应边哟,.,11,例1已知:如图,AB=AD,BC=DC,求证:ABCADC,A,B,C,D,AC,AC,AB=AD,ABCADC(SSS),证明:在ABC和ADC中,=,(已知),(已知),(公共边),BC=DC,.,12,例2:如图所示,ABC是一个钢架AB=AC,AD是连接点A与BC中点D的支架。求证:ABDACD。,证明:,D是BC的中点,BD=CD,在ABD和ACD中,AB=AC,BD=CD,AD=AD,ABDACD(SSS),分析:要证明两个三角形全等,需要那些条件?,若要求证:B=C,你会吗?,B=C(全等三角形的对应角相等),(已知),(已知),(公共边),(已证),(中点的定义),.,13,归纳:,一、准备条件:证全等时要用的间接条件要先证好;,二、三角形全等书写三步骤:,(1)写出在哪两个三角形中,(2)摆出三个条件用大括号括起来,(3)写出全等结论,证明全等的书写步骤:,.,14,练习、C是AB的中点,AD=CE,CD=BE。求证:ACDCBE(书P37练习1),A,B,E,D,C,训练提升,.,15,练习:如图,已知点B、E、C、F在同一条直线上,ABDE,ACDF,BECF.求证:AD.,证明:BECF(已知),即BCEF,在ABC和DEF中,ABDE,ACDF,BCEF,ABCDEF(SSS),AD(全等三角形对应角相等),BE+EC=CF+EC,拓展延伸,活学活用,(等式的性质),(已知),(已知),(已证),.,16,谈谈你的收获,2.三边对应相等的两个三角形全等(边边边或SSS);,3.书写格式:准备条件;三角形全等书写的三步骤。,1.知道三角形三条边的长度怎样画三角形。,4、找对应相等的边:公共边、中点或中线、通过计算(同加或同减)等,.,17,ABDDCB(),AB=CD,1、如图,AB=CD,AC=BD,ABC和DCB是否全等?试说明理由。,BC,CB,A,B,C,D,训练提升,SSS,解:ABCDCB理由如下:,=,(已知),(已知),(公共边),AC=BD,.,18,课堂小测,2.如图所示,在ABC中,AB=AC,BE=CE,则由“SSS”可以判定()AABDACDBBDECDECABEACED以上都不对,.,19,3、已知:点A、E、F、C在同一条直线上,AD
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论