




已阅读5页,还剩47页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
DataPreprocessing,SchoolofSoftware,NanjingUniversity,KnowledgeDiscoveryinDatabases,Chapter3:DataPreprocessing,Whypreprocessthedata?DatacleaningDataintegrationandtransformationDatareductionDiscretizationandconcepthierarchygenerationSummary,WhyDataPreprocessing?,Dataintherealworldisdirtyincomplete:lackingattributevalues,lackingcertainattributesofinterest,orcontainingonlyaggregatedatanoisy:containingerrorsoroutliersinconsistent:containingdiscrepanciesincodesornamesNoqualitydata,noqualityminingresults!QualitydecisionsmustbebasedonqualitydataDatawarehouseneedsconsistentintegrationofqualitydata,MajorTasksinDataPreprocessing,DatacleaningFillinmissingvalues,smoothnoisydata,identifyorremoveoutliers,andresolveinconsistenciesDataintegrationIntegrationofmultipledatabases,datacubes,orfilesDatatransformationNormalizationandaggregationDatareductionObtainsreducedrepresentationinvolumebutproducesthesameorsimilaranalyticalresultsDatadiscretizationPartofdatareductionbutwithparticularimportance,especiallyfornumericaldata,Formsofdatapreprocessing,Chapter3:DataPreprocessing,Whypreprocessthedata?DatacleaningDataintegrationandtransformationDatareductionDiscretizationandconcepthierarchygenerationSummary,DataCleaning,DatacleaningtasksFillinmissingvaluesIdentifyoutliersandsmoothoutnoisydataCorrectinconsistentdata,MissingData,DataisnotalwaysavailableE.g.,manytupleshavenorecordedvalueforseveralattributes,suchascustomerincomeinsalesdataMissingdatamaybeduetoequipmentmalfunctioninconsistentwithotherrecordeddataandthusdeleteddatanotenteredduetomisunderstandingcertaindatamaynotbeconsideredimportantatthetimeofentrynotregisterhistoryorchangesofthedataMissingdatamayneedtobeinferred.,HowtoHandleMissingData?,Ignorethetuple:usuallydonewhenclasslabelismissing(assumingthetasksinclassificationnoteffectivewhenthepercentageofmissingvaluesperattributevariesconsiderably.Fillinthemissingvaluemanually:tedious+infeasible?Useaglobalconstanttofillinthemissingvalue:e.g.,“unknown”,anewclass?!UsetheattributemeantofillinthemissingvalueUsetheattributemeanforallsamplesbelongingtothesameclasstofillinthemissingvalue:smarterUsethemostprobablevaluetofillinthemissingvalue:inference-basedsuchasBayesianformulaordecisiontree,NoisyData,Noise:randomerrororvarianceinameasuredvariableIncorrectattributevaluesmayduetofaultydatacollectioninstrumentsdataentryproblemsdatatransmissionproblemstechnologylimitation(e.g.Inputcachecapacity)inconsistencyinnamingconventionOtherdataproblemswhichrequiresdatacleaningduplicaterecordsincompletedatainconsistentdata,HowtoHandleNoisyData?,Binningmethod:firstsortdataandpartitioninto(equi-depth)binsthenonecansmoothbybinmeans,smoothbybinmedian,smoothbybinboundaries,etc.ClusteringdetectandremoveoutliersCombinedcomputerandhumaninspectiondetectsuspiciousvaluesandcheckbyhumanRegressionsmoothbyfittingthedataintoregressionfunctions,SimpleDiscretizationMethods:Binning,Equal-width(distance)partitioning:ItdividestherangeintoNintervalsofequalsize:uniformgridifAandBarethelowestandhighestvaluesoftheattribute,thewidthofintervalswillbe:W=(B-A)/N.ThemoststraightforwardButoutliersmaydominatepresentationSkeweddataisnothandledwell.Equal-depth(frequency)partitioning:ItdividestherangeintoNintervals,eachcontainingapproximatelysamenumberofsamplesGooddatascalingManagingcategoricalattributescanbetricky.,BinningMethodsforDataSmoothing,*Sorteddataforprice(indollars):4,8,9,15,21,21,24,25,26,28,29,34*Partitioninto(equi-depth)bins:-Bin1:4,8,9,15-Bin2:21,21,24,25-Bin3:26,28,29,34*Smoothingbybinmeans:-Bin1:9,9,9,9-Bin2:23,23,23,23-Bin3:29,29,29,29*Smoothingbybinboundaries:-Bin1:4,4,4,15-Bin2:21,21,25,25-Bin3:26,26,26,34,ClusterAnalysis,Regression,x,y,y=x+1,X1,Y1,Y1,Chapter3:DataPreprocessing,Whypreprocessthedata?DatacleaningDataintegrationandtransformationDatareductionDiscretizationandconcepthierarchygenerationSummary,DataIntegration,Dataintegration:combinesdatafrommultiplesourcesintoacoherentstoreSchemaintegrationintegratemetadatafromdifferentsourcesEntityidentificationproblem:identifyrealworldentitiesfrommultipledatasources,e.g.,A.cust-idB.cust-#Detectingandresolvingdatavalueconflictsforthesamerealworldentity,attributevaluesfromdifferentsourcesaredifferentpossiblereasons:differentrepresentations,differentscales,e.g.,metricvs.Britishunits,HandlingRedundantDatainDataIntegration,RedundantdataoccuroftenwhenintegrationofmultipledatabasesThesameattributemayhavedifferentnamesindifferentdatabasesOneattributemaybea“derived”attributeinanothertable,e.g.,annualrevenueRedundantdatamaybeabletobedetectedbycorrelationalanalysisCarefulintegrationofthedatafrommultiplesourcesmayhelpreduce/avoidredundanciesandinconsistenciesandimproveminingspeedandquality,DataTransformation,Smoothing:removenoisefromdataAggregation:summarization,datacubeconstructionGeneralization:concepthierarchyclimbingNormalization:scaledtofallwithinasmall,specifiedrangemin-maxnormalizationz-scorenormalizationnormalizationbydecimalscalingAttribute/featureconstructionNewattributesconstructedfromthegivenones,DataTransformation:Normalization,min-maxnormalizationz-scorenormalizationnormalizationbydecimalscaling,WherejisthesmallestintegersuchthatMax(|)1,Samples,Min-maxnormalizationAnattribute:income,havingvaluesfrom12000to98000Ifwewanttomapavalue73000toanewscope0.0,1.0Then(73000-12000)/(98000-12000)(1.0-0)=0.716Z-scorenormalizationIftheaverageoftheattribute“income”is54000,andthestandarddeviationis16000Then(73000-54000)/16000=1.225NormalizationbydecimalscalingGivenanattributeA,havingvaluesfrom986to987,themaximumabsolutionis987,sowegetj=3(thatis1000)-986willbetransformedto0.986,Chapter3:DataPreprocessing,Whypreprocessthedata?DatacleaningDataintegrationandtransformationDatareductionDiscretizationandconcepthierarchygenerationSummary,DataReductionStrategies,Warehousemaystoreterabytesofdata:Complexdataanalysis/miningmaytakeaverylongtimetorunonthecompletedatasetDatareductionObtainsareducedrepresentationofthedatasetthatismuchsmallerinvolumebutyetproducesthesame(oralmostthesame)analyticalresultsDatareductionstrategiesDatacubeaggregationDimensionalityreductionNumerosityreductionDiscretizationandconcepthierarchygeneration,DataCubeAggregation,ThelowestlevelofadatacubeTheaggregateddataforanindividualentityofintereste.g.,acustomerinaphonecallingdatawarehouse.MultiplelevelsofaggregationindatacubesFurtherreducethesizeofdatatodealwithReferenceappropriatelevelsUsethesmallestrepresentationwhichisenoughtosolvethetaskQueriesregardingaggregatedinformationshouldbeansweredusingdatacube,whenpossible,DimensionalityReduction,Featureselection(i.e.,attributesubsetselection):Selectaminimumsetoffeaturessuchthattheprobabilitydistributionofdifferentclassesgiventhevaluesforthosefeaturesisascloseaspossibletotheoriginaldistributiongiventhevaluesofallfeaturesreduce#ofpatternsinthepatterns,easiertounderstandThereare2dpossiblesub-featuresofdfeaturesTotestallthesesubsetsisprobablyimpossibleifthenumberoffeaturesistoohugeSoheuristicmethodsisoftenusedtosolvetheproblem,HeuristicFeatureSelectionMethods,Severalheuristicfeatureselectionmethods:Bestsinglefeaturesunderthefeatureindependenceassumption:choosebysignificancetests.Beststep-wisefeatureselection:Thebestsingle-featureispickedfirstThennextbestfeatureconditiontothefirst,.Step-wisefeatureelimination:RepeatedlyeliminatetheworstfeatureBestcombinedfeatureselectionandeliminationDecisiontree:ID3,C4.5,etc.,ExampleofDecisionTreeInduction,Initialattributeset:A1,A2,A3,A4,A5,A6,A4?,A1?,A6?,Class1,Class2,Class1,Class2,Reducedattributeset:A1,A4,A6,DataCompression,StringcompressionThereareextensivetheoriesandwell-tunedalgorithmsTypicallylosslessButonlylimitedmanipulationispossiblewithoutexpansionAudio/videocompressionTypicallylossycompression,withprogressiverefinementSometimessmallfragmentsofsignalcanbereconstructedwithoutreconstructingthewhole,DataCompression,OriginalData,CompressedData,lossless,OriginalDataApproximated,lossy,NumerosityReduction,ParametricmethodsAssumethedatafitssomemodel,estimatemodelparameters,storeonlytheparameters,anddiscardthedata(exceptpossibleoutliers)RegressionLog-linearmodels:obtainvalueatapointinm-DspaceastheproductonappropriatemarginalsubspacesNon-parametricmethodsDonotassumemodelsMajorfamilies:histograms,clustering,sampling,RegressionandLog-LinearModels,Linearregression:DataaremodeledtofitastraightlineOftenusestheleast-squaremethodtofitthelineMultipleregression:allowsaresponsevariableYtobemodeledasalinearfunctionofmultidimensionalfeaturevectorLog-linearmodel:approximatesdiscretemultidimensionalprobabilitydistributions,Linearregression:Y=+XTwoparameters,andspecifythelineandaretobeestimatedbyusingthedataathand.usingtheleastsquarescriteriontotheknownvaluesofY1,Y2,X1,X2,.Multipleregression:Y=b0+b1X1+b2X2.Manynonlinearfunctionscanbetransformedintotheabove.Log-linearmodels:Themulti-waytableofjointprobabilitiesisapproximatedbyaproductoflower-ordertables.Probability:p(a,b,c,d)=abacadbcd,RegressAnalysisandLog-LinearModels,Histograms,ApopulardatareductiontechniqueDividedataintobucketsandstoreaverage(sum)foreachbucketCanbeconstructedoptimallyinonedimensionusingdynamicprogrammingRelatedtoquantizationproblems.,Clustering,Partitiondatasetintoclusters,andonecanstoreclusterrepresentationonlyCanbeveryeffectiveifdataisclusteredbutnotifdatais“smeared”Canhavehierarchicalclusteringandbestoredinmulti-dimensionalindextreestructuresTherearemanychoicesofclusteringdefinitionsandclusteringalgorithms,furtherdetailedinChapter8,Sampling,Allowaminingalgorithmtorunincomplexitythatispotentiallysub-lineartothesizeofthedataChoosearepresentativesubsetofthedataSimplerandomsamplingmayhaveverypoorperformanceinthepresenceofskewDevelopadaptivesamplingmethodsStratifiedsampling:Approximatethepercentageofeachclass(orsubpopulationofinterest)intheoveralldatabaseUsedinconjunctionwithskeweddata,Sampling,SRSWOR(simplerandomsamplewithoutreplacement),SRSWR,RawData,Sampling,RawData,Cluster/StratifiedSample,Chapter3:DataPreprocessing,Whypreprocessthedata?DatacleaningDataintegrationandtransformationDatareductionDiscretizationandconcepthierarchygenerationSummary,Discretization,Threetypesofattributes:NominalvaluesfromanunorderedsetOrdinalvaluesfromanorderedsetContinuousrealnumbersDiscretization:dividetherangeofacontinuousattributeintointervalsSomeclassificationalgorithmsonlyacceptcategoricalattributes.ReducedatasizebydiscretizationPrepareforfurtheranalysis,DiscretizationandConcepthierachy,Discretizationreducethenumberofvaluesforagivencontinuousattributebydividingtherangeoftheattributeintointervals.Intervallabelscanthenbeusedtoreplaceactualdatavalues.Concepthierarchiesreducethedatabycollectingandreplacinglowlevelconcepts(suchasnumericvaluesfortheattributeage)byhigherlevelconcepts(suchasyoung,middle-aged,orsenior).,Discretizationandconcepthierarchygenerationfornumericdata,Binning(seesectionsbefore)Histogramanalysis(seesectionsbefore)Clusteringanalysis(seesectionsbefore)Entropy-baseddiscretization(willbeintroducedlater)Segmentationbynaturalpartitioning,Entropy-BasedDiscretization,GivenasetofsamplesS,ifSispartitionedintotwointervalsS1andS2usingboundaryT,theentropyafterpartitioningisTheboundarythatminimizestheentropyfunctionoverallpossibleboundariesisselectedasabinarydiscretization.Theprocessisrecursivelyappliedtopartitionsobtaineduntilsomestoppingcriterionismet,e.g.,ExperimentsshowthatitmayreducedatasizeandimproveclassificationaccuracySeethechapter”conceptdescriptionanddiscriminationmining”,Segmentationbynaturalpartitioning,3-4-5rulecanbeusedtosegmentnumericdataintorelativelyuniform,“natural”intervals.*Ifanintervalcovers3,6,7or9distinctvaluesatthemostsignificantdigit,partitiontherangeinto3equi-widthintervals*Ifitcovers2,4,or8distinctvaluesatthemostsignificantdigit,partitiontherangeinto4intervals*Ifitcovers1,5,or10distinctvaluesatthemostsignificantdigit,partitiontherangeinto5intervals,Exampleof3-4-5rule,(-$400-$5,000),Step4:,Concepthierarchygenerationforcategoricaldata,SpecificationofapartialorderingofattributesexplicitlyattheschemalevelbyusersorexpertsSpecificationofaportionofahierarchybyexplicitdatagroupingSpecificationofasetofattributes,butnotoftheirpartialorderingSpecificationofonlyapartialsetofattributes,Specificationofasetofattributes,Concepthierarchy
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 狂犬病防治知识课件
- 恩施物业整改工程方案(3篇)
- 磴口工程空气治理方案(3篇)
- 江苏省宿迁市2025年中考化学真题试卷附真题答案
- 安全教育大培训大计划课件
- 昆山语文面试题库及答案
- 科研单位面试题库及答案
- 长尾词视角下2025年页岩气开采技术环境影响深度解析
- 安全教育培训讲解课件
- 2025年氢能重卡商业化运营经济效益评估报告
- 数字产品服务使用协议书
- 中国邮政储蓄银行个人额借款合同4篇
- 4人合股合同协议书范本
- 【2025年】铁路机车车辆驾驶员资格考试模拟试卷(410题)及参考答案
- 【2025年】全民科学素质竞赛网络知识竞赛考试试卷题库(290题)附答案
- 2023-2025年高考生物试题分类汇编:孟德尔两大遗传定律原卷版
- 2025年机器人标准化行业发展趋势分析报告
- 2025年军考政治时事政治热点试题题库含答案
- 2025年村医笔试重点题库
- 养生艾灸直播课件
- 2025年徐州市中考语文试题卷(含答案及解析)
评论
0/150
提交评论