应用多元统计分析朱建平 课后答案_第1页
应用多元统计分析朱建平 课后答案_第2页
应用多元统计分析朱建平 课后答案_第3页
应用多元统计分析朱建平 课后答案_第4页
应用多元统计分析朱建平 课后答案_第5页
已阅读5页,还剩64页未读 继续免费阅读

应用多元统计分析朱建平 课后答案.pdf 免费下载

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2.1. 12 (,) p XXXX p 12 (,) p XXXX p 2.2 12 ()XX 12 ()XX 12 2 112 2 212 1/2 1 2 22 112112 22 212212 11 ( )exp()() 22 f xxx 2.3 12 ()XX 1212 12 22 2()()()()2()() ( ,) () () dc xaba xcxa xc f x x badc 1 axb 2 cxd 1 1 X 2 X 2 1 X 2 X 3 1 X 2 X 1 1 X 2 X 2222 112112112112 1111 222222 112112112112 22 1111 22 11 112112112112112112 11 22 112112112112112112112112112112112112112112112112 222222 ( )exp()() 2222222222 ( )exp()()( )exp()() 112112112112112112112112112112112112112112112112112112112112112112112112112112112112112112112112112112112112 ( )exp()()( )exp()()( )exp()() 22 112112112112112112112112112112112112112112112112112112112112112112112112112112112112112112112112112112112112112112112112112112112112112112112112112112112112112112112112 2222 212212212212 2222 2 2 222222222222222222222222222222222222222222 212212 222222 212212212212 2 2 212212212212212212212212 ( )exp()()( )exp()() 2222 ( )exp()() 22 ( )exp()()( )exp()()( )exp()() 112112112112112112 ( )exp()() 112112 ( )exp()()( )exp()()( )exp()()( )exp()()( )exp()()( )exp()() 22 ( )exp()() 112112 ( )exp()()( )exp()() 112112 ( )exp()() 212212 1 1 ( )exp()() 22 112112112112 ( )exp()()( )exp()()( )exp()() 2222 ( )exp()() 112112112112 ( )exp()() 112112112112112112 ( )exp()()( )exp()() 22222222 ( )exp()() 2222 212212212212212212212212212212 121121 2()()()()2()() 121121121 dc xaba xcxa xcdc xaba xcxa xc2()()()()2()()2()()()()2()()2()()()()2()() 121121121121 2()()()()2()()2()()()()2()()2()()()()2()()2()()()()2()() 121121121121 cxdcxd 1 1212 1 22 2()()()()2()() () () () d x c dc xaba xcxa xc fxdx badc 12212 2 2222 2()()2()()2()() () ()() () d d c c dc xa xba xcxa xc dx badcbadc 121 2222 0 2()()2()2() () ()() () d d c c dc xa xba txa t dt badcbadc 22 121 2222 0 2()()()2() 1 () ()() () d cd c dc xa xba txa t badcbadcba 1 X 2 ba 2 12 ba 2 X 2 1 2 1 , () 0 x xc d fxdc 2 dc 2 12 dc 2 1 X 2 X 12 cov( ,)x x 1212 1212 22 2()()()()2()() 22() () db ca dc xaba xcxa xcabdc xxdx dx badc ()() 36 cd ba 12 12 cov( ,)1 3 xx x x 3 1 X 2 X 1 X 2 X 12 1212 ( ,)()() xx f x xfxfx 2.4 12 (,) p XXXX 2 2 ()() 2 2 0 0 ()() 22() ()22() () 1 2()()()()2()() xd 2()()()()2()()abdcabdc xdxd abdcabdcabdcabdcabdcabdcabdc xdxdxd 12 xdxd abdcabdcabdcabdc xd 22() ()22() () 12 22() ()22() () 12 xdxd 12 12 (,) p XXXX 1/2 1 1 11 ( ,.,)exp()() 22 p p f xxxx 2 1 2 2 2 p 222 12p 2 1 2 1 2 2 1 1 1 p 1 ( ,.,) p f xx 2 1 1/2 2 2221 2 12 2 1 1 11 exp()() 22 1 p p p xx 2 22 1 2311 12 222 12 () ()()1111 exp. 2222 p pp p p x xx 2 1 2 1 ()1 exp(). () 22 p ii p i i i x f xf x 2.5 12p p12 222122212221 1111 1/21/2 222122212221 1/21/2 exp()() 22212221 11 exp()() 1 n i i nXX 1 ()() n ii i nXX XX 35650.00 12.33 17325.00 152.50 X 201588000.0038900.0083722500.00- 736800.00 38900.0013.06716710.00- 35.80 83722500.0016710.0036573750.00- 199875.00 - 736800.00- 35.800- 199875.0016695.10 1 1 pn n 1XX,S 1 () nnn n 1 1X IX 10 01 n I SPSS 1.AnalyzeDescriptive StatisticsDescriptivesDescriptives Variables2.1 2.1Descriptives 2.OptionsOptions Mean2.2Continue 1 ()() 1 nnnnnn ()() n n ()()()()()() 1 ()()()() Descriptive StatisticsDescriptive Statistics VariablesVariables 1010 n n I In Descriptive StatisticsDescriptivesDescriptives VariablesVariables 2.2 Options 3.OK2.1 35.333312.333317.16671.5250E2 2.1 SPSS 1.AnalyzeCorrelateBivariate Bivariate CorrelationsVariables 2.3 2.3 Bivariate Correlations 2.OptionsOptions Cross- product deviations and covariances 2.4Continue Analyze 2.4 Options 3.OK 2.2CovariancePearson CorrelationSum of Squares and Cross- products 2.6 2.7( ,) p NX 12 ,., n X XXX X 111 ( ) nnn ii iii EEnEnnXXX 22 111 11 ( ) nnn ii iii DDnD nnn XXX ( ,) p NX 2.81 1 1 ()() 1 n ii i n XX XX 1 1 1 n ii i n n X XXX 1 1 ( )() 1 n ii i EEn n X XXX 1 1 1 n ii i EnE n X XXX 1 11 (1) 11 n i nn nnn 2 1 () n ii i SX - X)(X - X 1 ( n ii i X -X)X -X) 11 ()()2()()() nn iii ii nX -X -X -X-X)(XX 1 ()()2 ()() n ii i nnX -X -X)(XX)(X 1 ()()() n ii i nX -X -X)(X 1 1 ()()()() 11 n ii i EEn nn S X -X -X)(X 1 1 ()()() 1 n ii i EnE n X -X -X)(X 1n S 2.9. (1)(2)( )n X ,X,.,X( ,) p NXS ( 1111 ()()2()()() nnnn iiiiii ()()2()()()()()2()()()()()2()()() iiii1111111111111111 ()()2()()()()()2()()()()()2()()()()()2()()()()()2()()()()()2()()()()()2()()() iiiiiiiii ()()2()()()()()2()()()()()2()()()()()2()()()()()2()()()()()2()()()()()2()()()()()2()()()()()2()()()()()2()()()()()2()()()()()2()()()()()2()()()()()2()()()()()2()()()()()2()()()()()2()()()()()2()()()()()2()()()()()2()()()()()2()()()()()2()()()()()2()()()()()2()()()()()2()()()()()2()()()()()2()()()()()2()()()()()2()()()()()2()()()()()2()()()()()2()()()()()2()()()()()2()()()()()2()()()()()2()()()()()2()()()()()2()()()()()2()()()()()2()()()()()2()()()()()2()()()()()2()()()()()2()()()()()2()()()()()2()()()()()2()()()()()2()()()()()2()()()()()2()()()()()2()()()()()2()()() ()()2 ()()()()2 ()()()()2 ()()()()2 ()()()()2 ()()()()2 ()()()()2 ()()()()2 ()()()()2 ()()()()2 ()()()()2 ()()()()2 ()()()()2 ()()()()2 ()()()()2 ()()()()2 ()()()()2 ()()()()2 ()()()()2 ()()()()2 ()()()()2 ()()()()2 ()()()()2 ()()()()2 ()()()()2 ()()()()2 ()()()()2 ()()()()2 ()()()()2 ()()()()2 ()()()()2 ()()()()2 ()()()()2 ()()()()2 ()()()()2 ()()()()2 ()()()()2 ()()()()2 ()()()()2 ()()()()2 ()()()()2 ()()()()2 ()()()()2 ()()()()2 ()()()()2 ()()()()2 ()()()()2 ()()()()2 ()()()()2 ()()()()2 ()() ()()()()()() ii ()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()() ()()()()()()()() n n ()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()() * * ()* 111 ij nnn I 12n12n = () = XXX (1,2,3,4,),in i X 12 () n 1 1 n ni in1 1 ()() n ni i EEn n ()Var n Z 1 ()()(1,2,3,1) n aajj j EEran 1 1 n aj j n n r 1 0 n aj nj i nr r 1 ()() n aajj j VarVarr 22 11 nn ajjaj jj r Varr 121n (0,)N 1 ()() n jj i SXX XX 1 n jj j nX XXX 11 11 nn iinn ii nnnn nn XXXXZ Z 11 aj jj r Varraj 11 22 aj r Varrajr Varr 121121121121121 n n n j jj X X X XXXXX 2 1 21 1 1 2 12n n X X XXX X 1 2 12n n Z Z ZZZ Z nn n j jjnn n j jj ZZZZZZXX 11 1122 . nnnn Z ZZ ZZ Z - 1 1 n jj j S 121 , n Z ZZ(0,) p N 1 1 (1, ) n jjp j WnS 2.10.() ii X np(,) pii N1,2,3,ik 1 2 . k12 . k1 2 2 . k12 ,., k1 1 11 12 1 . a n k a i ai k nnn xx 11 12 . a n k aa ii ai k nnn xxxx (2) 1 ln (,) k L 2 11 1 ln ()exp 2 a n k n paa iaia ai 2 - 1 (x - )(x - ) 121121121n121121121 ZZZZ 121121121121121121121 ZZ . . (0,)(0,) p N Np p (,) pii (,)(,)(,) k k k k . . . 11 11 ln ()ln()ln 222 a n k aa iaia ai n Lpn2 - 1 ,(x - )(x - ) 2 11 11 ln ( ,)1 ()()0 22 a n k aa iaia ai Ln XX 1 1 ln (,) ()0(1,2,., ) j n j ijj i j L jkX 1 1 j n jjij i j n xx 11 12 . j n k jj ji k nnn ijij xxxx 20 ()X zn /2 |zz 20 ()X tn S /2 | |(1)ttn 22 1 1 () 1 n i i SXX n 2 00 H 212 000 ()() ( )TnpXX 22 0 T 2 (1)1 ( ,) (1) np TF p np np 2 (1) np TF np () 21 00 (1)()()TnnnXSX 012 H 212 0 ()() ( ) n m Tp nm XYXY 22 0 T 2 (2)1 ( ,1) (2) nmp FTF p nmp nmp FF 21 (2)()() n mn m Tnm nmnm XYSXY mn - 1 () ( ,) np n FF p np p Z S ZFF mn 1 () ( ,) np n FF p np p - Z S ZFF k H 210 (1) (1,) () SSA k FF knk SSE nk FF ( ,1)p nk k EE TAE 0 0p HI /2 /21 exp 2 np ne tr n SS 00p HI /2 /2 * 1 exp 2 np ne tr n SS 12k012k H /2/2 /2/2 11 i i kk nn pnnp kii ii nnSS 2 221 2 () () () () n X tn XSX S (,) p NX( ,) p WnSXS (1,)(1,)(1,)(1,)(1,)(1,)(1,)(1,)(1,)(1,)(1,)(1,) EEEEEE TAETAETAETAE 1 expexpexp 00p p ( ,1)( ,1)( ,1)( ,1)( ,1)( ,1)( ,1)( ,1) 00 I I pnT2 ( ,) p NX0( ,) p WnSXS 21 TnX S X 2 1 ( ,1) np TF p np np 2 2 TF F F p 1 n 2 n F 1 11 1 1 1 1( ,1) ( ,1) ( ,1) npp n F p np pp n 2 1 1 1 1 1( ,2) (2 ,2() ( ,2) p nnp Fpnp pp n 1 112 21 212 1(1,) (,) (1,) nn n F n n nn n 2 12 1 21 2 12 1(2,)1 (2,2(1) (2,) n nn Fnn nn n 012k H 1ij Hij ( ,1)p nk k EE TAE Wilks 1 1111 212 1(1,)1(1,) 11 nn nnn n 1111 1(1,) 11 nn nnn n 212212 1(1,)1(1,) n 2 112 2 212212 1(1,)1(1,) 112 2 (,)(,) (1,)(1,) 212212 1(1,)1(1,)1(1,) 11 (,) nn n 212 (1,)(1,)(1,) 212212212212 (2 ,2()(2 ,2()(2 ,2()(2 ,2()(2 ,2()(2 ,2()(2 ,2()(2 ,2()(2 ,2()(2 ,2()(2 ,2()(2 ,2() 1(2,)1(2,)1(2,) (2,)(2,) 1(2,)1(2,)1(2,)1(2,)1(2,) 22 12 ( ,)( ,)DGDGXX 11 1122 111111 111222 111 211122 ()()()() 2(2) 2() XXXX XXXXXX X 11 211212 1 12 12 2()()() 2() 2 2()2 () X X XX ( )()W XX k k GGG, 21k , 21k , 21 k21 21 ( ,)()()DGXXX 111 1 2 2()C XXX XXI X I 11 2 1 Ck, 2 , 1 ( )WCXI Xk, 2 , 1 i GX 1 ( )max() i k WCXI X k GGG, 21 )(,),(),( 21 xxx k fff k qqq, 21 0 i q1 1 k i i q i G j G)|(ijCkji, 2 , 1, k k GGG, 21 p),( 21k RRRR R i G j G xx dfRijP j R i )(),|(jikji, 2 , 1, k j RijPijCRir 1 ),|()|()|(ki, 2 , 1 21 ( ,)()()( ,)()() 2121 ( ,)()()( ,)()() 21 ( ,)()()( ,)()()( ,)()()( ,)()()( ,)()()( ,)()()( ,)()() 21 ( ,)()()( ,)()()( ,)()()( ,)()()( ,)()()( ,)()()( ,)()()( ,)()()( ,)()()( ,)()()( ,)()()( ,)()()( ,)()()( ,)()() 111111 2()2()2()2()2()2() 111111111111111111111111111111111111111111 X X 111111111111111111111111111111111111111111111111111111111111 k k1 1 , 2 , 1 , 2 , 1 k, 2 , 12 , 1 i Gi( )max() i WCWC( )max() i( ) max() R k i i RirqRg 1 ),()( k i k j i RijPijCq 11 ),|()|( k RRR, 21 )(Rg k i k j i RijPijCqRg 11 ),|()|()( xx dfijCq k i k j R ii j 11 )()|( k j R k i ii j dfijCq 11 )()|(xx 1 ( | )( )( ) k iij i qC j i fhxx k j R j j dhRg 1 )()(xx ),( * 2 * 1 * k RRRR k j R j j dhRg 1 * * )()(xx k i k j RR ji ji dhhRgRg 11 * * )()()()(xxx i R)()(xx ji hh j ),( 21k RRRR 1 |( )min( ) iij j k Rhhxxx ki, 2 , 1 k p 1122 ( ) pp Uu Xu Xu XXu X ),( 21p uuuu p ()UX j j 1 j j d)( )( j j hjxdh hj j j j ),) k , RhhRhh pp Uu Xu Xu XUu Xu Xu X pp iijiij |( )min( ) |( )min( ) |( )min( )Rhh |( )min( ) |( )min( ) iij |( )min( ) |( )min( ) |( )min( ) |( )min( ) |( )min( ) |( )min( ) |( )min( ) |( )min( ) |( )min( ) |( )min( ) |( )min( ) |( )min( ) p Uu Xu Xu XUu Xu Xu X pp Uu Xu Xu XUu Xu Xu XUu Xu Xu XUu Xu Xu XUu Xu Xu X 21 qq) 1|2()2|1 (CC 1d 0ln d 4.8 12.258 22.567 33.039 43.286 52.876 63.587 74.898 81.734 92.242 102.743 3.0 85 groupgroup123X1 X2X3spss 1.SPSSAnalyzeClassifyDiscriminate groupX1X2X3 Enter independents together 2.Define Range 1313Continue 4.1 4.1 3.Statistics Function CoefficientsFishersBayes FisherFishers Fisher 4.2Continue 4.2statistics 1X X2 2 3Continue 4.Classify classificationDisplay Summary table 4.3 4.3 classification 5.OK 1)Bayes Bayes4.1Bayes Group13761.162297.121689.11843.811XXXY Group23086.172361.131707.10536.942XXXY Group33447. 62960. 41194. 2449.173XXXY Bayes Classification Function Coefficients group 123 x1- 11.689- 10.707- 2.194 x212.29713.3614.960 x316.76117.0866.447 (Constant)- 81.843- 94.536- 17.449 Fishers linear discriminant functions 4.1Bayes 4.243 175%32 166.7%3 80.0% Classification Resultsa group Predicted Group Membership Total123 OriginalCount13104 21203 group 26020 Classification Function Coefficients 16.761 - 81.843 Fishers linear discriminant functions - 10.707 13.361 3 4.1 30033 %175.025.0.0100.0 233.366.7.0100.0 3.0.0100.0100.0 a. 80.0% of original grouped cases correctly classified. 4.2 2)0 . 31X82X53X3Bayes 2Y classificationcasewise results 4.9 1 X 2 X 3 X 4 X 5 X 6 X 7 X 8 X BayesFisher 5319185011.202.023.58 1 X 2 X 3 X 4 X 5 X 6 X 7 X 8 X 123172316.600.341.71 2341173598.001.812.91 3422723414.600.94.94 43911954813.101.934.36 535191345.000.401.30 6371132415.101.801.82 7291131427.401.461.65 83221167523.307.769.72 928223236.400.191.29 10261432710.502.47.36 group0grou20 2.023.5811groupspss 1.SPSSAnalyzeClassifyDiscriminate group61XX Enter independents together 2.Define Range0 101Continue X BayesBayes 531 19 91818 6371132415.101.801.82 123172316.600.341.71123172316.600.341.71 2341173598.001.812.912341173598.001.812.91 3422723414.600.94.943422723414.600.94.94 43911954813.101.934.3643911954813.101.934.36 535191345.000.401.30535191345.000.401.30 4 4 X X4 4X X 6 6 X X6 6 FisherFisher 5011.2011.202.02 3.Statistics Function CoefficientsFishersUnstandardizedContinue 4.Classify Display Casewise results Continue 5.OK 1) 4.3 4.3 Fisher 8383. 27792. 06710. 05024. 04357. 03173. 02687. 6132. 0794.10XXXXXXXXY Y group0group0 4.4 4.4 bayes bayes 4.5groupBayes Bayes 8504.377994.106723.135969. 24943. 43033. 12070.941340. 0693.1180XXXXXXXXG 8116.497133 . 7 6182.175086 . 3 4681. 63874 . 1 2660.1261184. 0296.1711XXXXXXXXG 3173. 023173.23302. 043570 . 04 group0 4.5Bayes Bayes 2)Casewise Stasticsgroup0 4.10 1 X 2 X 3 X 4 X 1 X 2 X 3 X 4 X 12281342011 22451341040 32001671227 417015078 51001672014 6225125714 7130100612 815011776 91201331026 10160100510 11185115519 1217012564 13165142531510011772 group1group2group3 bayes spss 1.SPSSAnalyzeClassifyDiscriminate 1228134201112281342011 2245134104022451341040 1 1 X X1 1 1228134201112281342011 62251257146225125714 71301006127130100612 815011776815011776 51001672014 91201331026 62251257146225125714 71301006127130100612 1228134201112281342011 2245134104022451341040 3200167122732001671227 417015078417015078 5100167201451001672014 2 2 X2 groupX1X2X3X4Enter independents together 2.Define Range13 13Continue 3.Statistics Function Coefficients FishersBayes 4.Classify classificationDisplaySummary table 5.OK Bayes Bayes4.6Bayes Group14073. 03778. 02753. 01164. 0212.791XXXXY Group24012. 03317. 02595. 01130. 0721.462XXXXY Group34059. 03100. 02637. 01130. 0598.493XXXXY Bayes 4.6Bayes 4.75 4 180%5 4180%5 4180.0% 4.7 4 5.1 n pk 5.2 5.3 n pn 1/ 1 ( )() p q q ijikjk k dqXX q 1 1q 1 (1) p ijikjk k dXX 2 2q 2 1/2 1 (2)() p ijikjk k dXX 3 q 1 ( )max ijikjk kp dXX 21 ()()() ijijij dMXXXX 1 1 ( ) p ikjk ij k ikjk XX dL pXX 1 1 q ijikjkijikjk k k dqXXdqXX ijikjkijikjkijikjkijikjk dqXXdqXXdqXX ijikjkijikjkijikjkijikjkijikjkijikjkijikjkijikjkijikjk dqXX ijikjk 1/ ) q 2 2 1/2 ) ikjkikjk dXXdXX ikjkikjkikjk dXXdXXdXX ikjkikjk p 5.4 dijXiXjDijGiGj 1. , min ikjr krij XGXG Dd min, kpkq DD 2 , max ipjq pqij XGXG Dd , max ikjr krij XGXG Ddmax, kpkq DD 3 4 2 () () pqpqpq DXXXX )( 1 qqpp r r XnXn n X 2222 2 pqpq krkpkqpq rrr nnn n DDDD nnn 1 22 11 cos ()() p ikjk k ij pp ikjk kk X X XX 1 22 11 ()() ()() p ikijkj k ij pp ikijkj kk XXXX r XXXX ij GXGX ij dD jjii , min 2222 2 1 2 1 pqkqkpkr DDDD ij ijmin,min,min,min,min,min,min, kpkqkpkq min,min,min,min,min, ij ikjrikjr ij ij XGXG ikjrikjr DdDdij ij XGXG ikjr max, 5 22 1 ipjj pqij XGXG pq Dd n n 22 1 ikjr krij XG XG kr Dd n n 22pq kpkq rr nn DD nn 6 1 7 2222 1 () 2 krkpkqpq DDDD1 8 1 () () t n tittitt t SXXXX 2222kpkq k krkpkqpq rkrkrk nnnn n DDDD nnnnnn 1 2 3 5.5K K K K 5.6K 2222 (1)() pq krkpkqpq rr nn DDDD nn krkpkqpq 22222222kpkq2222 nnnn 2222222222222222 DDDDDDDD 222222222222 krkpkqpqkrkpkqpqkrkpkqpq 222222222222 krkpkqpqkrkpkqpq rkrkrkrkrkrk n 2222 DDDDDDDDDDDD 222222222222 k 2222 krkpkqpqkrkpkqpq 2222 nnnnnnnnnnnn krkpkqpqkrkpkqpqkrkpkqpq rkrkrkrkrkrkrkrkrk krkpkqpqkrkpkqpq nnnnnnnnnnnnnnnnnn krkpkqpqkrkpkqpq rkrkrkrkrkrk K K K )()2()1( , n XXX n )()1()( , jii XXX,1ni nj, 1,jiiGi1 Di,j2Lp(l,k)(3)k4 5.7123 6911. 1 0 10 210 5430 87630 1098520 0 5430 8763087630 30 630 8520 =2 0 30 630 2 0 10 410 251690 64493690 10081642540 0 160 4990 812540 , =4 0 160 64160 5.8 111.090.210.0596.9870.531.86- 44.0481.99 211.960.590.7451.7890.734.957.0216.11 300.030.03181.99100- 2.98103.3321.18 411.580.130.1746.0792.181.146.55- 56.32 5- 6.19- 0.090.0343.382.241.52- 1713.5- 3.36 6100.470.4868.4864.7- 11.560.85 710.490.110.3582.9899.871.02100.2330.32 811.12- 1.690.12132.14100- 0.66- 4454.39- 62.75 93.410.040.267.8698.511.25- 11.25- 11.43 101.160.010.5443.71001.03- 87.18- 7.41 1130.220.160.487.3694.880.53729.41- 9.97 128.190.220.3830.311002.73- 12.31- 2.77 1395.79- 5.20.5252.3499.34- 5.42- 9816.52- 46.82 1416.550.350.9372.3184.052.14115.95123.41 15- 24.18- 1.160.7956.2697.84.81- 533.89- 27.74 :X1X2X3X4 X5X6X7X8spss a): 1.SPSSAnalyzeClassifyHierachical Cluster X8-X1VariablesClusterCases VariablesDisplay StatisticsPlots 211.960.590.7451.7890.734.957.0216.11 300.030.03181.99100- 2.98103.3321.18300.030.03181.99100- 2.98103.3321.18 411.580.130.1746.0792.181.146.55- 56.32411.580.130.1746.0792.181.146.55- 56.32 5- 6.19- 0.090.0343.382.241.52- 1713.5- 3.365- 6.19- 0.090.0343.382.241.52- 1713.5- 3.36 6100.470.4868.4864.7- 11.560.856100.470.4868.4864.7- 11.560.85 710.490.110.3582.9899.871.02100.2330.32710.490.110.3582.9899.871.02100.2330.32 811.12- 1.690.12132.14100- 0.66- 4454.39- 62.75811.12- 1.690.12132.14100- 0.66- 4454.39- 62.75 93.410.040.267.8698.511.25- 11.25- 11.4393.410.040.267.8698.511.25- 11.25- 11.43 111.090.210.0596.9870.531.86- 44.0481.99111.090.210.0596.9870.531.86- 44.0481.99 211.960.590.7451.7890.734.957.0216.11211.960.590.7451.7890.734.957.0216.11 300.030.03181.99100- 2.98103.3321.18300.030.03181.99100- 2.98103.3321.18 411.580.130.1746.0792.181.146.55- 56.32411.580.130.1746.0792.181.146.55- 56.32 5- 6.19- 0.090.0343.382.241.52- 1713.5- 3.365- 6.19- 0.090.0343.382.241.52- 1713.5- 3.36 6100.470.4868.4864.7- 11.560.856100.470.4868.4864.7- 11.560.85 710.490.110.3582.9899.871.02100.2330.32710.490.110.3582.9899.871.02100.2330.32 811.12- 1.690.12132.14100- 0.66- 4454.39- 62.75811.12- 1.690.12132.14100- 0.66- 4454.39- 62.75 93.410.040.267.8698.511.25- 11.25- 11.4393.410.040.267.8698.511.25- 11.25- 11.43 101.160.010.5443.71001.03- 87.18- 7.41101.160.010.5443.71001.03- 87.18- 7.41 1130.220.160.487.3694.880.53729.41- 9.971130.220.160.487.3694.880.53729.41- 9.97 128.190.220.3830.311002.73- 12.31- 2.77128.190.220.3830.311002.73- 12.31- 2.77 1395.79- 5.20.5252.3499.34- 5.42- 9816.52- 46.821395.79- 5.20.5252.3499.34- 5.42- 9816.52- 46.82 1416.550.350.9372.3184.052.14115.95123.411416.550.350.9372.3184.052.14115.95123.41 15- 24.18- 1.160.7956.2697.84.81- 533.89- 27.7415- 24.18- 1.160.7956.2697.84.81- 533.89- 27.74 5.1 2.Statistics Agglomeration scheduleCluster MembershipRange of solution 2 45.2 Conti

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论