3.1.1随机现象.pptx_第1页
3.1.1随机现象.pptx_第2页
3.1.1随机现象.pptx_第3页
3.1.1随机现象.pptx_第4页
3.1.1随机现象.pptx_第5页
已阅读5页,还剩33页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

3.1.3概率的基本性质,第三章3.1随机事件的概率,学习目标1.了解互斥事件概率的加法公式.2.理解事件的关系与运算.3.会用对立事件的特征求概率.,问题导学,达标检测,题型探究,内容索引,问题导学,知识点一事件的关系与运算,思考一粒骰子掷一次,记事件A出现的点数大于4,事件B出现的点数为5,则事件B发生时,事件A一定发生吗?答案因为54,故B发生时A一定发生.,梳理1.对于事件A与事件B,如果事件发生,则事件一定发生,这时称事件B包含事件A(或称事件A包含于事件B),记作(或AB).与集合类比,如图所示.,不可能事件记作,任何事件都包含不可能事件.如果事件A发生,则事件B一定发生,反之也成立,(若,且),那么称事件A与事件B相等,记作AB.,A,B,BA,BA,AB,2.关于事件的运算,有下表:,事件A发生或,事件B发生,并事件,和事件,事件A发生且,事件B发生,交事件,积事件,AB,AB,AB,AB,思考一粒骰子掷一次,事件E出现的点数为3,事件F出现的点数大于3,事件G出现的点数小于4,则EF是什么事件?EF呢?GF呢?GF呢?答案EF不可能事件,EF出现的点数大于2.GF不可能事件,GF必然事件.,知识点二互斥与对立的概念,梳理互斥事件和对立事件,知识点三概率的基本性质,思考概率的取值范围是什么?为什么?答案概率的取值范围在01之间,即0P(A)1;由于事件的频数总是小于或等于试验的次数,所以频率在01之间,因而概率的取值范围也在01之间.,梳理概率的几个基本性质(1)概率的取值范围为.(2)的概率为1,的概率为0.(3)概率的加法公式:如果事件A与事件B互斥,则P(AB).特别地,若A与B为对立事件,则P(A).P(AB),P(AB).,0,1,必然事件,不可能事件,P(A)P(B),1P(B),1,0,思考辨析判断正误1.若两个事件是互斥事件,则这两个事件是对立事件.()2.若两个事件是对立事件,则这两个事件也是互斥事件.()3.若两个事件是对立事件,则这两个事件概率之和为1.(),题型探究,例1从40张扑克牌(红桃、黑桃、方块、梅花,点数从110各10张)中,任取一张.(1)“抽出红桃”与“抽出黑桃”;(2)“抽出红色牌”与“抽出黑色牌”;(3)“抽出的牌点数为5的倍数”与“抽出的牌点数大于9”.判断上面给出的每对事件是否为互斥事件,是否为对立事件,并说明理由.,类型一事件关系的判断,解答,解(1)是互斥事件,不是对立事件.理由是:从40张扑克牌中任意抽取1张,“抽出红桃”和“抽出黑桃”是不可能同时发生的,所以是互斥事件.同时,不能保证其中必有一个发生,这是由于还可能抽出“方块”或者“梅花”,因此,二者不是对立事件.(2)既是互斥事件,又是对立事件.理由是:从40张扑克牌中,任意抽取1张,“抽出红色牌”与“抽出黑色牌”,两个事件不可能同时发生,但其中必有一个发生,所以它们既是互斥事件,又是对立事件.,(3)不是互斥事件,当然不可能是对立事件.理由是:从40张扑克牌中任意抽取1张,“抽出的牌点数为5的倍数”与“抽出的牌点数大于9”这两个事件可能同时发生,如抽得牌点数为10,因此,二者不是互斥事件,当然不可能是对立事件.,反思与感悟(1)要判断两个事件是不是互斥事件,只需要分别找出各个事件包含的所有结果,看它们之间能不能同时发生.在互斥的前提下,看两个事件的并事件是否为必然事件,从而可判断是否为对立事件.(2)考虑事件的结果间是否有交事件.可考虑利用Venn图分析,对于较难判断的关系,也可考虑列出全部结果,再进行分析.,跟踪训练1从装有5个红球和3个白球的口袋内任取3个球,那么下列各对事件中,互斥而不对立的是A.至少有一个红球与都是红球B.至少有一个红球与都是白球C.至少有一个红球与至少有一个白球D.恰有一个红球与恰有两个红球解析根据互斥事件与对立事件的定义判断.A中两事件不是互斥事件,事件“三个球都是红球”是两事件的交事件;B中两事件是对立事件;C中两事件能同时发生,如“恰有一个红球和两个白球”,故不是互斥事件;D中两事件是互斥而不对立事件.,解析,答案,类型二事件的运算,例2在掷骰子的试验中,可以定义许多事件.例如,事件C1出现1点,事件C2出现2点,事件C3出现3点,事件C4出现4点,事件C5出现5点,事件C6出现6点,事件D1出现的点数不大于1,事件D2出现的点数大于3,事件D3出现的点数小于5,事件E出现的点数小于7,事件F出现的点数为偶数,事件G出现的点数为奇数,请根据上述定义的事件,回答下列问题:(1)请举出符合包含关系、相等关系的事件;,解答,解因为事件C1,C2,C3,C4发生,则事件D3必发生,所以C1D3,C2D3,C3D3,C4D3.同理可得,事件E包含事件C1,C2,C3,C4,C5,C6;事件D2包含事件C4,C5,C6;事件F包含事件C2,C4,C6;事件G包含事件C1,C3,C5.且易知事件C1与事件D1相等,即C1D1.,(2)利用和事件的定义,判断上述哪些事件是和事件.解因为事件D2出现的点数大于3出现4点或出现5点或出现6点,所以D2C4C5C6(或D2C4C5C6).同理可得,D3C1C2C3C4,EC1C2C3C4C5C6,FC2C4C6,GC1C3C5.,解答,反思与感悟事件间运算方法(1)利用事件间运算的定义.列出同一条件下的试验所有可能出现的结果,分析并利用这些结果进行事件间的运算.(2)利用Venn图.借助集合间运算的思想,分析同一条件下的试验所有可能出现的结果,把这些结果在图中列出,进行运算.,跟踪训练2盒子里有6个红球,4个白球,现从中任取3个球,设事件A3个球中有一个红球,两个白球,事件B3个球中有两个红球,一个白球,事件C3个球中至少有一个红球,事件D3个球中既有红球又有白球.则:(1)事件D与事件A,B是什么样的运算关系?解对于事件D,可能的结果为1个红球2个白球或2个红球1个白球,故DAB.(2)事件C与事件A的交事件是什么事件?解对于事件C,可能的结果为1个红球2个白球,2个红球1个白球或3个红球,故CAA.,解答,类型三用互斥、对立事件求概率,解答,解“甲获胜”可看成是“和棋或乙获胜”的对立事件,,解答,(2)甲不输的概率.,解方法一“甲不输”可看成是“甲获胜”“和棋”这两个互斥事件的并事件,,方法二“甲不输”可看成是“乙获胜”的对立事件,,反思与感悟(1)只有当A,B互斥时,公式P(AB)P(A)P(B)才成立;只有当A,B互为对立事件时,公式P(A)1P(B)才成立.(2)复杂的互斥事件概率的求法有两种:一是直接求解,将所求事件的概率分解为一些彼此互斥的事件的概率的和,运用互斥事件的概率的加法公式计算;二是间接求解,先找出所求事件的对立事件,再用公式P(A)1P()求解.,跟踪训练3从一箱产品中随机地抽取一件,设事件A“抽到一等品”,事件B“抽到二等品”,事件C“抽到三等品”.已知P(A)0.65,P(B)0.2,P(C)0.1,则事件“抽到的不是一等品”的概率为A.0.20B.0.39C.0.35D.0.90解析抽到的不是一等品的对立事件是抽到一等品,而P(A)0.65,抽到的不是一等品的概率是10.650.35.,答案,解析,达标检测,1.从装有两个红球和两个黑球的口袋内任取两个球,那么互斥而不对立的两个事件是A.“至少有一个黑球”与“都是黑球”B.“至少有一个黑球”与“至少有一个红球”C.“恰有一个黑球”与“恰有两个黑球”D.“至少有一个黑球”与“都是红球”解析A中的两个事件能同时发生,故不互斥;同样,B中两个事件也可同时发生,故不互斥;D中两个事件是对立的,故选C.,答案,解析,1,2,3,4,5,答案,解析,2.口袋内装有一些大小相同的红球、白球和黑球,从中摸出1个球,摸出红球的概率是0.42,摸出白球的概率是0.28,那么摸出黑球的概率是A.0.42B.0.28C.0.3D.0.7解析摸出黑球是摸出红球或摸出白球的对立事件,摸出黑球的概率是10.420.280.3,故选C.,1,2,3,4,5,3.在一次随机试验中,彼此互斥的事件A,B,C,D的概率分别是0.2,0.2,0.3,0.3,则下列说法正确的是A.AB与C是互斥事件,也是对立事件B.BC与D是互斥事件,也是对立事件C.AC与BD是互斥事件,但不是对立事件D.A与BCD是互斥事件,也是对立事件,1,2,3,4,5,答案,解析,1,2,3,4,5,解析由于A,B,C,D彼此互斥,且由P(ABCD)P(A)P(B)P(C)P(D)1,知ABCD是一个必然事件,故其事件的关系如图所示.由图可知,任何一个事件与其余3个事件的和事件必然是对立事件,任何两个事件的和事件与其余两个事件的和事件也是对立事件,故只有D中的说法正确.,解析由于事件“中国队夺得女子乒乓球单打冠军”包括事件“甲夺得冠军”和“乙夺得冠军”,但这两个事件不可能同时发生,即彼此互斥,所以可按互斥事件概率的加法公式进行计算,,答案,解析,1,2,3,4,5,1,2,3,4,5,5.某公务员去开会,他乘火车、轮船、汽车、飞机去的概率分别是0.3,0.2,0.1,0.4.求:(1)他乘火车或飞机去的概率;解设乘火车去开会为事件A,乘轮船去开会为事件B,乘汽车去开会为事件C,乘飞机去开会为事件D,它们彼此互斥.P(AD)P(A)P(D)0.30.40.7.(2)他不乘轮船去的概率.解P1P(B)10.20.8.,解答,1.互斥事件和对立事件都是针对两个事件而言的,它们两者之间既有区别又有联系.在一次试验中,两个互斥事件有可能都不发生,也可能有一个发生,但不可能两个都发生;而两个对立事件必有一个发生

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论